Urinary Concentrating Defect in Hypothyroid Rats: Role of Sodium, Potassium, 2-Chloride Co-Transporter, and Aquaporins

Author:

Cadnapaphornchai Melissa A.,Kim Yang-Wook,Gurevich Andrey K.,Summer Sandra N.,Falk Sandor,Thurman Joshua M.,Schrier Robert W.

Abstract

ABSTRACT. Hypothyroidism is associated with impaired urinary concentrating ability in humans and animals. The purpose of this study was to examine protein expression of renal sodium chloride and urea transporters and aquaporins in hypothyroid rats (HT) with diminished urinary concentration as compared with euthyroid controls (CTL) and hypothyroid rats replaced with L-thyroxine (HT+T). Hypothyroidism was induced by aminotriazole administration. Body weight, water intake, urine output, solute and urea excretion, serum and urine osmolality, serum creatinine, 24-h creatinine clearance, and fractional excretion of sodium were comparable among the three groups. However, with 36 h of water deprivation, HT rats demonstrated significantly greater urine flow rates and decreased urine and medullary osmolality as compared with CTL and HT+T rats at comparable plasma vasopressin concentrations. Western blot analyses revealed decreased renal protein abundance of transporters, including Na-K-2Cl, Na-K-ATPase, and NHE3, in HT rats as compared with CTL and HT+T rats. Protein abundance of renal AQP1 and urea transporters UTA1 and UTA2 did not differ significantly among study groups. There was however a significant decrease in protein abundance of AQP2, AQP3, and AQP4 in HT rats as compared with CTL and HT+T rats. These findings demonstrate a decrease in the medullary osmotic gradient secondary to impaired countercurrent multiplication and downregulation of aquaporins 2, 3, and 4 as contributors to the urinary concentrating defect in the hypothyroid rat. E-mail: robert.schrier@uchsc.edu

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3