Intracellular Mechanisms of Cyclosporin A–Induced Tubular Cell Apoptosis

Author:

Justo Pilar,Lorz Corina,Sanz Ana,Egido Jesus,Ortiz Alberto

Abstract

ABSTRACT. Tubular cell apoptosis contributes to the pathogenesis of renal injury. However, the intracellular pathways that are active in tubular epithelium are poorly understood. The lethal pathways activated by cyclosporin A (CsA), a nephrotoxin that induces caspase-dependent apoptosis in tubular epithelium, were explored. Fas expression, caspase activation, and mitochondrial injury were assessed by Western blot, flow cytometry, and microscopy in cultured murine tubular epithelial cells exposed to CsA. The influence of FasL antagonists, Bax antisense oligodeoxynucleotides, and caspase inhibitors on cell survival was explored. Tubular cells constitutively express FasL. CsA increased the expression of Fas. However, Fas had no role in CsA-induced apoptosis, as CsA did not sensitize to FasL-induced apoptosis, caspase-8 activity was not increased, and neither blocking anti-FasL antibodies nor caspase-8 inhibition prevented CsA-induced apoptosis. Apoptosis induced by CsA is associated with the translocation of Bax to the mitochondria and Bax antisense oligodeoxynucleotides protected from CsA-induced apoptosis. CsA promoted a caspase-independent release of cytochrome c and Smac/Diablo from mitochondria. CsA also led to a caspase-dependent loss of mitochondrial membrane potential. Caspase-2, caspase-3, and caspase-9 were activated, and specific caspase inhibitor prevented apoptosis and increased long-term survival. Evidence for endoplasmic reticulum stress, such as induction of GADD153, was also uncovered. However, endoplasmic reticulum-specific caspase-12 was not activated. CsA induces changes in several apoptotic pathways. However, the main lethal apoptotic pathway in CsA-exposed tubular epithelial cells involves mitochondrial injury.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3