Activation of Pro-Apoptotic Cascade by Dopamine in Renal Epithelial Cells is Fully Dependent on Hydrogen Peroxide Generation by Monoamine Oxidases

Author:

Bianchi Pascale,Séguélas Marie-Hélène,Parini Angelo,Cambon Claudie

Abstract

ABSTRACT. Dopamine plays a critical role in regulation of different renal functions, including glomerular filtration, renin secretion, and sodium excretion. Recent studies have shown that some of the dopamine effects in the proximal tubule may involve hydrogen peroxide (H2O2) generation by the catecholamine-degrading enzyme monoamine oxidases (MAO). The present study is an investigation of the potential role of H2O2 generated by MAO during dopamine degradation in apoptosis of proximal tubule cells. Dopamine concentrations between 50 and 200 μM induced apoptosis of rat proximal tubule and monoamine oxidase B-transfected HEK 293 cells (+73% compared with untreated cells) but not in wild-type HEK 293 cell lacking monoamine oxidases. Apoptosis of proximal tubule cells was preceded by an increase in the ratio of Bax/Bcl2 proteins, the release of mitochondrial cytochrome c, caspase-3 activation, and DNA fragmentation. All these events required dopamine internalization into the cells, its metabolism by MAO, and H2O2 production, as they were prevented by the dopamine uptake inhibitor GBR-12909, the irreversible MAO inhibitor pargyline, or the antioxidant N-acetylcysteine. These results show that, in renal proximal tubule cells, dopamine induces oxidative stress, activation of pro-apoptotic cascade, and cell apoptosis exclusively by mechanisms involving H2O2 production by monoamine oxidases. E-mail: parini@toulouse.inserm.fr

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3