Author:
Eaton Philip,Jones Miriam E.,McGregor Emma,Dunn Michael J.,Leeds Nicola,Byers Helen L.,Leung Kit-Yi,Ward Malcolm A.,Pratt Julian R.,Shattock Michael J.
Abstract
ABSTRACT. Biotin-cysteine was used to study protein S-thiolation in isolated rat kidneys subjected to ischemia and reperfusion. After 40 min of ischemia, total protein S-thiolation increased significantly (P < 0.05), by 311%, and remained significantly elevated (P < 0.05), 221% above control, after 5 min of postischemic reperfusion. Treatment of protein samples with 2-mercaptoethanol abolished the S-thiolation signals detected, consistent with the dependence of the signal on the presence of a disulfide bond. With the use of gel filtration chromatography followed by affinity purification with streptavidin-agarose, S-thiolated proteins were purified from CHAPS-soluble kidney homogenate. The proteins were then separated by SDS-PAGE and stained with Coomassie blue. With a combination of matrix-assisted laser desorption ionization time of flight mass spectrometry and LC/MS/MS analysis of protein bands digested with trypsin, a number of S-thiolation substrates were identified. These included the LDL receptor–related protein 2, ATP synthase α chain, heat shock protein 90 β, hydroxyacid oxidase 3, serum albumin precursor, triose phosphate isomerase, and lamin. These represent proteins that may be functionally regulated by S-thiolation and thus could undergo a change in activity or function after renal ischemia and reperfusion. E-mail: philip.eaton@kcl.ac.uk
Publisher
American Society of Nephrology (ASN)
Subject
Nephrology,General Medicine
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献