Glomerular Endothelial Fenestrae In Vivo Are Not Formed from Caveolae

Author:

Sörensson Jenny,Fierlbeck Wolfgang,Heider Torsten,Schwarz Karin,Park David S.,Mundel Peter,Lisanti Michael,Ballermann Barbara J.

Abstract

ABSTRACT. Previous reports indicate that endothelial fenestrae in vitro can form by fusion of caveolae or caveolae-like vesicles. The principal aim of this study was to determine whether formation of glomerular endothelial cell fenestrae in vivo similarly involves caveolae and caveolin-1. Whereas caveolin-1 immunofluorescence was found around the circumference of human and mouse glomerular capillary loops, it co-localized only partially with the endothelium-specific lectin Ulex Europaeus I in human glomeruli, leaving portions of the endothelium devoid of caveolin-1. Immunogold electron microscopy, used to definitively localize caveolin-1 in glomeruli, showed that caveolin-1 was completely excluded from the fenestrated portion of the endothelium. Moreover, in caveolin-1–deficient mice, which cannot form caveolae, the ultrastructure of glomerular endothelial fenestrae appeared entirely normal. Interestingly, strong caveolin-1 immunogold labeling was observed in podocytes, where some caveolin-1 localized to filtration slits. Caveolin-1 co-immunoprecipitated with the podocyte slit diaphragm proteins nephrin and CD2AP, and dual immunofluorescence confirmed co-localization of caveolin-1 and nephrin. Nevertheless, in caveolin-1–deficient mice, podocyte ultrastructure appeared normal, and the podocyte proteins synaptopodin, nephrin, and podocin were expressed normally. In addition, blood urea nitrogen concentrations and urinary protein excretion in these mice were similar to those in wild-type mice. Thus, unlike caveolae formation, glomerular endothelial cell fenestrae formation in vivo does not require caveolin-1, ruling out the previous hypothesis that endothelial fenestrae represent fused caveolae, at least for glomerular endothelial cells. Localization of caveolin-1 to podocytes and their filtration slits is consistent with the view that the filtration slit plasma membrane represents a type of lipid raft microdomain.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3