Antioxidants Protect Calsequestrin-1 Knockout Mice from Halothane- and Heat-induced Sudden Death

Author:

Michelucci Antonio1,Paolini Cecilia1,Canato Marta1,Wei-Lapierre Lan1,Pietrangelo Laura1,De Marco Alessandro1,Reggiani Carlo1,Dirksen Robert T.1,Protasi Feliciano1

Affiliation:

1. From the Center for Research on Ageing and Department of Neuroscience, Imaging and Clinical Sciences, University G. d′Annunzio of Chieti, Chieti, Italy (A.M., C.P., L.P., A.D.M., F.P.); Department of Biomedical Sciences, University of Padova, Padova, Italy (M.C., C.R.); and Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York (L.W.-L., R.T.D.).

Abstract

Abstract Background: Mice lacking calsequestrin-1 (CASQ1-null), a Ca2+-binding protein that modulates the activity of Ca2+ release in the skeletal muscle, exhibit lethal hypermetabolic episodes that resemble malignant hyperthermia in humans when exposed to halothane or heat stress. Methods: Because oxidative species may play a critical role in malignant hyperthermia crises, we treated CASQ1-null mice with two antioxidants, N-acetylcysteine (NAC, Sigma-Aldrich, Italy; provided ad libitum in drinking water) and (±)-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox, Sigma-Aldrich; administered by intraperitoneal injection), before exposure to halothane (2%, 1 h) or heat (41°C, 1 h). Results: NAC and Trolox significantly protected CASQ1-null mice from lethal episodes, with mortality being 79% (n = 14), 25% (n = 16), and 20% (n = 5) during halothane exposure and 86% (n = 21), 29% (n = 21), and 33% (n = 6) during heat stress in untreated, NAC-treated, and Trolox-treated mice, respectively. During heat challenge, an increase in core temperature in CASQ1-null mice (42.3° ± 0.1°C, n=10) was significantly reduced by both NAC and Trolox (40.6° ± 0.3°C, n = 6 and 40.5° ± 0.2°C, n = 6). NAC treatment of CASQ1-null muscles/mice normalized caffeine sensitivity during in vitro contracture tests, Ca2+ transients in single fibers, and significantly reduced the percentage of fibers undergoing rhabdomyolysis (37.6 ± 2.5%, 38/101 fibers in 3 mice; 11.6 ± 1.1%, 21/186 fibers in 5 mice). The protective effect of antioxidant treatment likely resulted from mitigation of oxidative stress, because NAC reduced mitochondrial superoxide production, superoxide dismutase type-1 expression, and 3-nitrotyrosine expression, and increased both reduced glutathione and reduced glutathione/oxidized glutathione ratio. Conclusion: These studies provide a deeper understanding of the mechanisms that underlie hyperthermic crises in CASQ1-deficient muscle and demonstrate that antioxidant pretreatment may prevent them.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3