Increasing Levels of Positive End-expiratory Pressure Cause Stepwise Biventricular Stroke Work Reduction in a Porcine Model

Author:

Wood Gregory1,Madsen Tobias Lynge2,Kim Won Yong3,Lyhne Mads Dam4ORCID

Affiliation:

1. 1Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.

2. 2Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.

3. 3Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.

4. 4Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark.

Abstract

Background Positive end-expiratory pressure (PEEP) is commonly applied to avoid atelectasis and improve oxygenation in patients during general anesthesia but affects cardiac pressures, volumes, and loading conditions through cardiorespiratory interactions. PEEP may therefore alter stroke work, which is the area enclosed by the pressure-volume loop and corresponds to the external work performed by the ventricles to eject blood. The low-pressure right ventricle may be even more susceptible to PEEP than the left ventricle. The authors hypothesized that increasing levels of PEEP would reduce stroke work in both ventricles. Methods This was a prospective, observational, experimental study. Six healthy female pigs of approximately 60 kg were used. PEEP was stepwise increased from 0 to 5, 7, 9, 11, 13, 15, 17, and 20 cm H2O to cover the clinical spectrum of PEEP. Simultaneous, biventricular invasive pressure-volume loops, invasive blood pressures, and ventilator data were recorded. Results Increasing PEEP resulted in stepwise reductions in left (5,740 ± 973 vs. 2,303 ± 1,154 mmHg · ml; P < 0.001) and right (2,064 ± 769 vs. 468 ± 133 mmHg · ml; P < 0.001) ventricular stroke work. The relative stroke work reduction was similar between the two ventricles. Left ventricular ejection fraction, afterload, and coupling were preserved. On the contrary, PEEP increased right ventricular afterload and caused right ventriculo-arterial uncoupling (0.74 ± 0.30 vs. 0.19 ± 0.13; P = 0.01) with right ventricular ejection fraction reduction (64 ± 8% vs. 37 ± 7%, P < 0.001). Conclusions A stepwise increase in PEEP caused stepwise reduction in biventricular stroke work. However, there are important interventricular differences in response to increased PEEP levels. PEEP increased right ventricular afterload leading to uncoupling and right ventricular ejection fraction decline. These findings may support clinical decision-making to further optimize PEEP as a means to balance between improving lung ventilation and preserving right ventricular function. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3