Validation of a Deep Learning–based Automatic Detection Algorithm for Measurement of Endotracheal Tube–to–Carina Distance on Chest Radiographs

Author:

Huang Min‑Hsin1,Chen Chi-Yeh2,Horng Ming-Huwi3,Li Chung-I4,Hsu I-Lin5,Su Che-Min6,Sun Yung-Nien7,Lai Chao-Han8ORCID

Affiliation:

1. 1Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.

2. 2Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan; MOST AI Biomedical Research Center, Tainan, Taiwan.

3. 3Department of Computer Science and Information Engineering, National Pingtung University, Pingtung, Taiwan.

4. 4Department of Statistics, College of Management, National Cheng Kung University, Tainan, Taiwan.

5. 5Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.

6. 6Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.

7. 7Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan; MOST AI Biomedical Research Center, Tainan, Taiwan.

8. 8Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee.

Abstract

Background Improper endotracheal tube (ETT) positioning is frequently observed and potentially hazardous in the intensive care unit. The authors developed a deep learning–based automatic detection algorithm detecting the ETT tip and carina on portable supine chest radiographs to measure the ETT–carina distance. This study investigated the hypothesis that the algorithm might be more accurate than frontline critical care clinicians in ETT tip detection, carina detection, and ETT–carina distance measurement. Methods A deep learning–based automatic detection algorithm was developed using 1,842 portable supine chest radiographs of 1,842 adult intubated patients, where two board-certified intensivists worked together to annotate the distal ETT end and tracheal bifurcation. The performance of the deep learning–based algorithm was assessed in 4-fold cross-validation (1,842 radiographs), external validation (216 radiographs), and an observer performance test (462 radiographs) involving 11 critical care clinicians. The performance metrics included the errors from the ground truth in ETT tip detection, carina detection, and ETT–carina distance measurement. Results During 4-fold cross-validation and external validation, the median errors (interquartile range) of the algorithm in ETT–carina distance measurement were 3.9 (1.8 to 7.1) mm and 4.2 (1.7 to 7.8) mm, respectively. During the observer performance test, the median errors (interquartile range) of the algorithm were 2.6 (1.6 to 4.8) mm, 3.6 (2.1 to 5.9) mm, and 4.0 (1.7 to 7.2) mm in ETT tip detection, carina detection, and ETT–carina distance measurement, significantly superior to that of 6, 10, and 7 clinicians (all P < 0.05), respectively. The algorithm outperformed 7, 3, and 0, 9, 6, and 4, and 5, 5, and 3 clinicians (all P < 0.005) regarding the proportions of chest radiographs within 5 mm, 10 mm, and 15 mm error in ETT tip detection, carina detection, and ETT–carina distance measurement, respectively. No clinician was significantly more accurate than the algorithm in any comparison. Conclusions A deep learning–based algorithm can match or even outperform frontline critical care clinicians in ETT tip detection, carina detection, and ETT–carina distance measurement. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3