Combined Recirculatory-compartmental Population Pharmacokinetic Modeling of Arterial and Venous Plasma S(+) and R(–) Ketamine Concentrations

Author:

Henthorn Thomas K.1,Avram Michael J.1,Dahan Albert1,Gustafsson Lars L.1,Persson Jan1,Krejcie Tom C.1,Olofsen Erik1

Affiliation:

1. From the Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado (T.K.H.); the Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (T.K.H.); the Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (M.J.A., T.C.K.); the Department of

Abstract

Abstract What We Already Know about This Topic What This Article Tells Us That Is New Background The pharmacokinetics of infused drugs have been modeled without regard for recirculatory or mixing kinetics. We used a unique ketamine dataset with simultaneous arterial and venous blood sampling, during and after separate S(+) and R(–) ketamine infusions, to develop a simplified recirculatory model of arterial and venous plasma drug concentrations. Methods S(+) or R(–) ketamine was infused over 30 min on two occasions to 10 healthy male volunteers. Frequent, simultaneous arterial and forearm venous blood samples were obtained for up to 11 h. A multicompartmental pharmacokinetic model with front-end arterial mixing and venous blood components was developed using nonlinear mixed effects analyses. Results A three-compartment base pharmacokinetic model with additional arterial mixing and arm venous compartments and with shared S(+)/R(–) distribution kinetics proved superior to standard compartmental modeling approaches. Total pharmacokinetic flow was estimated to be 7.59 ± 0.36 l/min (mean ± standard error of the estimate), and S(+) and R(–) elimination clearances were 1.23 ± 0.04 and 1.06 ± 0.03 l/min, respectively. The arm-tissue link rate constant was 0.18 ± 0.01 min–1, and the fraction of arm blood flow estimated to exchange with arm tissue was 0.04 ± 0.01. Conclusions Arterial drug concentrations measured during drug infusion have two kinetically distinct components: partially or lung-mixed drug and fully mixed-recirculated drug. Front-end kinetics suggest the partially mixed concentration is proportional to the ratio of infusion rate and total pharmacokinetic flow. This simplified modeling approach could lead to more generalizable models for target-controlled infusions and improved methods for analyzing pharmacokinetic-pharmacodynamic data.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3