Antagonists of the TMEM16A Calcium-activated Chloride Channel Modulate Airway Smooth Muscle Tone and Intracellular Calcium

Author:

Danielsson Jennifer1,Perez-Zoghbi Jose1,Bernstein Kyra1,Barajas Matthew B.1,Zhang Yi1,Kumar Satish1,Sharma Pawan K.1,Gallos George1,Emala Charles W.1

Affiliation:

1. From the Department of Anesthesiology, Columbia University, New York, New York (J.D., K.B., M.B.B., Y.Z., G.G., C.W.E.); Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas (J.P.-Z.); and Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India (S.K., P.K.S.).

Abstract

Abstract Background: Perioperative bronchospasm refractory to β agonists continues to challenge anesthesiologists and intensivists. The TMEM16A calcium-activated chloride channel modulates airway smooth muscle (ASM) contraction. The authors hypothesized that TMEM16A antagonists would relax ASM contraction by modulating membrane potential and calcium flux. Methods: Human ASM, guinea pig tracheal rings, or mouse peripheral airways were contracted with acetylcholine or leukotriene D4 and then treated with the TMEM16A antagonists: benzbromarone, T16Ainh-A01, N-((4-methoxy)-2-naphthyl)-5-nitroanthranilic acid, or B25. In separate studies, guinea pig tracheal rings were contracted with acetylcholine and then exposed to increasing concentrations of isoproterenol (0.01 nM to 10 μM) ± benzbromarone. Plasma membrane potential and intracellular calcium concentrations were measured in human ASM cells. Results: Benzbromarone was the most potent TMEM16A antagonist tested for relaxing an acetylcholine -induced contraction in guinea pig tracheal rings (n = 6). Further studies were carried out to investigate the clinical utility of benzbromarone. In human ASM, benzbromarone relaxed either an acetylcholine- or a leukotriene D4–induced contraction (n = 8). Benzbromarone was also effective in relaxing peripheral airways (n = 9) and potentiating relaxation by β agonists (n = 5 to 10). In cellular mechanistic studies, benzbromarone hyperpolarized human ASM cells (n = 9 to 12) and attenuated intracellular calcium flux from both the plasma membrane and the sarcoplasmic reticulum (n = 6 to 12). Conclusion: TMEM16A antagonists work synergistically with β agonists and through a novel pathway of interrupting ion flux at both the plasma membrane and sarcoplasmic reticulum to acutely relax human ASM.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3