Intubation Biomechanics

Author:

Hindman Bradley J.1,From Robert P.1,Fontes Ricardo B.1,Traynelis Vincent C.1,Todd Michael M.1,Zimmerman M. Bridget1,Puttlitz Christian M.1,Santoni Brandon G.1

Affiliation:

1. From the Department of Anesthesia, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa (B.J.H., R.P.F., M.M.T.); Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois (R.B.F., V.C.T.); Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa (M.B.Z.); Department of Mechanical Engineering, School of Biomedic

Abstract

Abstract Background The aims of this study are to characterize (1) the cadaver intubation biomechanics, including the effect of repeated intubations, and (2) the relation between intubation force and the motion of an injured cervical segment. Methods Fourteen cadavers were serially intubated using force-sensing Macintosh and Airtraq laryngoscopes in random order, with simultaneous cervical spine motion recorded with lateral fluoroscopy. Motion of the C1-C2 segment was measured in the intact and injured state (type II odontoid fracture). Injured C1-C2 motion was proportionately corrected for changes in intubation forces that occurred with repeated intubations. Results Cadaver intubation biomechanics were comparable with those of patients in all parameters other than C2-C5 extension. In cadavers, intubation force (set 2/set 1 force ratio = 0.61; 95% CI, 0.46 to 0.81; P = 0.002) and Oc-C5 extension (set 2 − set 1 difference = −6.1 degrees; 95% CI, −11.4 to −0.9; P = 0.025) decreased with repeated intubations. In cadavers, C1-C2 extension did not differ (1) between intact and injured states; or (2) in the injured state, between laryngoscopes (with and without force correction). With force correction, in the injured state, C1-C2 subluxation was greater with the Airtraq (mean difference 2.8 mm; 95% CI, 0.7 to 4.9 mm; P = 0.004). Conclusions With limitations, cadavers may be clinically relevant models of intubation biomechanics and cervical spine motion. In the setting of a type II odontoid fracture, C1-C2 motion during intubation with either the Macintosh or the Airtraq does not appear to greatly exceed physiologic values or to have a high likelihood of hyperextension or direct cord compression.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3