Pharmacodynamic Interaction of Remifentanil and Dexmedetomidine on Depth of Sedation and Tolerance of Laryngoscopy

Author:

Weerink Maud A. S.1,Barends Clemens R. M.1,Muskiet Ernesto R. R.1,Reyntjens Koen M. E. M.1,Knotnerus Froukje H.1,Oostra Martine1,van Bocxlaer Jan F. P.1,Struys Michel M. R. F.1,Colin Pieter J.1

Affiliation:

1. From the Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (M.A.S.W., C.R.M.B., E.R.R.M., K.M.E.M.R., F.H.K., M.O., M.M.R.F.S., P.J.C.); and the Departments of Basic and Applied Medical Sciences (M.M.R.F.S.) and Bioanalysis (P.J.C., J.F.P.v.B.), Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.

Abstract

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Dexmedetomidine is a sedative with modest analgesic efficacy, whereas remifentanil is an opioid analgesic with modest sedative potency. Synergy is often observed when sedative–hypnotics are combined with opioid analgesics in anesthetic practice. A three-phase crossover trial was conducted to study the pharmacodynamic interaction between remifentanil and dexmedetomidine. Methods After institutional review board approval, 30 age- and sex- stratified healthy volunteers were studied. The subjects received consecutive stepwise increasing target-controlled infusions of dexmedetomidine, remifentanil, and remifentanil with a fixed dexmedetomidine background concentration. Drug effects were measured using binary (yes or no) endpoints: no response to calling the subject by name, tolerance of shaking the patient while shouting the name (“shake and shout”), tolerance of deep trapezius squeeze, and tolerance of laryngoscopy. The drug effect was measured using the electroencephalogram-derived “Patient State Index.” Pharmacokinetic–pharmacodynamic modeling related the administered dexmedetomidine and remifentanil concentration to these observed effects. Results The binary endpoints were correlated with dexmedetomidine concentrations, with increasing concentrations required for increasing stimulus intensity. Estimated model parameters for the dexmedetomidine EC50 were 2.1 [90% CI, 1.6 to 2.8], 9.2 [6.8 to 13], 24 [16 to 35], and 35 [23 to 56] ng/ml, respectively. Age was inversely correlated with dexmedetomidine EC50 for all four stimuli. Adding remifentanil did not increase the probability of tolerance of any of the stimuli. The cerebral drug effect as measured by the Patient State Index was best described by the Hierarchical interaction model with an estimated dexmedetomidine EC50 of 0.49 [0.20 to 0.99] ng/ml and remifentanil EC50 of 1.6 [0.87 to 2.7] ng/ml. Conclusions Low dexmedetomidine concentrations (EC50 of 0.49 ng/ml) are required to induce sedation as measured by the Patient State Index. Sensitivity to dexmedetomidine increases with age. Despite falling asleep, the majority of subjects remained arousable by calling the subject’s name, “shake and shout,” or a trapezius squeeze, even when reaching supraclinical concentrations. Adding remifentanil does not alter the likelihood of response to graded stimuli.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3