Pharmacokinetics and Pharmacodynamics of Remimazolam (CNS 7056) after Continuous Infusion in Healthy Male Volunteers

Author:

Eisenried Andreas1,Schüttler Jürgen1,Lerch Marco1,Ihmsen Harald1,Jeleazcov Christian1

Affiliation:

1. From the Department of Anesthesiology, University Hospital Erlangen, University of Erlangen-Nuremberg (FAU), Erlangen, Germany.

Abstract

Abstract Background Remimazolam (CNS 7056) is a new ultra-short acting benzodiazepine for IV sedation. This study aimed to investigate the electroencephalogram (EEG) pharmacodynamics of remimazolam infusion. Methods Twenty healthy male volunteers received remimazolam as continuous IV infusion of 5 mg/min for 5 min, 3 mg/min for the next 15 min, and 1 mg/min for further 15 min. Continuous EEG monitoring was performed by a neurophysiologic system with electrodes placed at F3, F4, C3, C4, O1, O2, Cz, and Fp1 (10/20 system) and using the Narcotrend Index. Sedation was assessed clinically by using the Modified Observer’s Assessment of Alertness and Sedation scale. Pharmacodynamic models were developed for selected EEG variables and Narcotrend Index. Results EEG changes during remimazolam infusion were characterized by an initial increase in beta frequency band and a late increase in delta frequency band. The EEG beta ratio showed a prediction probability of Modified Observer’s Assessment of Alertness and Sedation score of 0.79, and could be modeled successfully using a standard sigmoid Emax model. Narcotrend Index showed a prediction probability of Modified Observer’s Assessment of Alertness and Sedation score of 0.74. The time course of Narcotrend Index was described by an extended sigmoid Emax model with two sigmoid terms and different plasma–effect equilibration times. Conclusions Beta ratio was identified as a suitable EEG variable for monitoring remimazolam sedation. Narcotrend Index appeared less suitable than the beta ratio for monitoring the sedative effect if remimazolam is administered alone. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3