Personalized Surgical Transfusion Risk Prediction Using Machine Learning to Guide Preoperative Type and Screen Orders

Author:

Lou Sunny S.1ORCID,Liu Hanyang2,Lu Chenyang2,Wildes Troy S.1,Hall Bruce L.3,Kannampallil Thomas4

Affiliation:

1. Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri.

2. Department of Computer Science and Engineering, Washington University School of Medicine, St. Louis, Missouri.

3. Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; BJC HealthCare, St. Louis, Missouri.

4. Department of Anesthesiology and the Institute for Informatics, Washington University School of Medicine, St. Louis, Missouri.

Abstract

Background Accurate estimation of surgical transfusion risk is essential for efficient allocation of blood bank resources and for other aspects of anesthetic planning. This study hypothesized that a machine learning model incorporating both surgery- and patient-specific variables would outperform the traditional approach that uses only procedure-specific information, allowing for more efficient allocation of preoperative type and screen orders. Methods The American College of Surgeons National Surgical Quality Improvement Program Participant Use File was used to train four machine learning models to predict the likelihood of red cell transfusion using surgery-specific and patient-specific variables. A baseline model using only procedure-specific information was created for comparison. The models were trained on surgical encounters that occurred at 722 hospitals in 2016 through 2018. The models were internally validated on surgical cases that occurred at 719 hospitals in 2019. Generalizability of the best-performing model was assessed by external validation on surgical cases occurring at a single institution in 2020. Results Transfusion prevalence was 2.4% (73,313 of 3,049,617), 2.2% (23,205 of 1,076,441), and 6.7% (1,104 of 16,053) across the training, internal validation, and external validation cohorts, respectively. The gradient boosting machine outperformed the baseline model and was the best- performing model. At a fixed 96% sensitivity, this model had a positive predictive value of 0.06 and 0.21 and recommended type and screens for 36% and 30% of the patients in internal and external validation, respectively. By comparison, the baseline model at the same sensitivity had a positive predictive value of 0.04 and 0.144 and recommended type and screens for 57% and 45% of the patients in internal and external validation, respectively. The most important predictor variables were overall procedure-specific transfusion rate and preoperative hematocrit. Conclusions A personalized transfusion risk prediction model was created using both surgery- and patient-specific variables to guide preoperative type and screen orders and showed better performance compared to the traditional procedure-centric approach. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3