Propofol-induced Unresponsiveness Is Associated with a Brain Network Phase Transition

Author:

Pullon Rebecca M.1,Warnaby Catherine E.2,Sleigh Jamie W.1

Affiliation:

1. Department of Anesthesiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand

2. the Wellcome Center for Integrative Neuroimaging and Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom

Abstract

Background The wakeful brain can easily access and coordinate a large repertoire of different states—dynamics suggestive of “criticality.” Anesthesia causes loss of criticality at the level of electroencephalogram waveforms, but the criticality of brain network connectivity is less well studied. The authors hypothesized that propofol anesthesia is associated with abrupt and divergent changes in brain network connectivity for different frequencies and time scales—characteristic of a phase transition, a signature of loss of criticality. Methods As part of a previously reported study, 16 volunteers were given propofol in slowly increasing brain concentrations, and their behavioral responsiveness was assessed. The network dynamics from 31-channel electroencephalogram data were calculated from 1 to 20 Hz using four phase and envelope amplitude–based functional connectivity metrics that covered a wide range of time scales from milliseconds to minutes. The authors calculated network global efficiency, clustering coefficient, and statistical complexity (using the Jensen–Shannon divergence) for each functional connectivity metric and compared their findings with those from an in silico Kuramoto network model. Results The transition to anesthesia was associated with critical slowing and then abrupt profound decreases in global network efficiency of 2 Hz power envelope metrics (from mean ± SD of 0.64 ± 0.15 to 0.29 ± 0.28 absolute value, P < 0.001, for medium; and from 0.47 ± 0.13 to 0.24 ± 0.21, P < 0.001, for long time scales) but with an increase in global network efficiency for 10 Hz weighted phase lag index (from 0.30 ± 0.20 to 0.72 ± 0.06, P < 0.001). Network complexity decreased for both the 10 Hz hypersynchronous (0.44 ± 0.13 to 0.23 ± 0.08, P < 0.001), and the 2 Hz asynchronous (0.73 ± 0.08 to 0.40 ± 0.13, P < 0.001) network states. These patterns of network coupling were consistent with those of the Kuramoto model of an order–disorder phase transition. Conclusions Around loss of behavioral responsiveness, a small increase in propofol concentrations caused a collapse of long time scale power envelope connectivity and an increase in 10 Hz phase-based connectivity—suggestive of a brain network phase transition. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3