Resuscitation with Hydroxyethyl Starch Maintains Hemodynamic Coherence in Ovine Hemorrhagic Shock

Author:

Arnemann Philip-Helge1,Hessler Michael1,Kampmeier Tim1,Seidel Laura1,Malek Youssef1,Van Aken Hugo1,Morelli Andrea1,Rehberg Sebastian1,Ince Can1,Ertmer Christian1

Affiliation:

1. From the Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital of Muenster, Muenster, Germany (P.-H.A., M.H., T.K., L.S., Y.M., H.V.A., C.E.); the Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological and Geriatric Sciences, University of Rome, La Sapienza, Rome, Italy (A.M.); the Department of Anesthesiology, Intensive Care, Emergency Medicine,

Abstract

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Fluid resuscitation in hemorrhagic shock aims to restore hemodynamics and repair altered microcirculation. Hemodynamic coherence is the concordant performance of macro- and microcirculation. The present study on fluid therapy in hemorrhagic shock hypothesized that the choice of fluid (0.9% sodium chloride [saline group] or balanced 6% hydroxyethyl starch 130/0.4 [hydroxyethyl starch group]) impacts on hemodynamic coherence. Methods After instrumentation, 10 sheep were bled up to 30 ml/kg body weight of blood stopping at a mean arterial pressure of 30 mmHg to establish hemorrhagic shock. To reestablish baseline mean arterial pressure, they received either saline or hydroxyethyl starch (each n = 5). Hemodynamic coherence was assessed by comparison of changes in mean arterial pressure and both perfused vessel density and microvascular flow index. Results Bleeding of 23 ml/kg blood [21; 30] (median [25th; 75th percentile]) in the saline group and 24 ml/kg [22; 25] (P = 0.916) in the hydroxyethyl starch group led to hemorrhagic shock. Fluid resuscitation reestablished baseline mean arterial pressure in all sheep of the hydroxyethyl starch group and in one sheep of the saline group. In the saline group 4,980 ml [3,312; 5,700] and in the hydroxyethyl starch group 610 ml [489; 615] of fluid were needed (P = 0.009). In hemorrhagic shock perfused vessel density (saline from 100% to 83% [49; 86]; hydroxyethyl starch from 100% to 74% [61; 80]) and microvascular flow index (saline from 3.1 [2.5; 3.3] to 2.0 [1.6; 2.3]; hydroxyethyl starch from 2.9 [2.9; 3.1] to 2.5 [2.3; 2.7]) decreased in both groups. After resuscitation both variables improved in the hydroxyethyl starch group (perfused vessel density: 125% [120; 147]; microvascular flow index: 3.4 [3.2; 3.5]), whereas in the saline group perfused vessel density further decreased (64% [62; 79]) and microvascular flow index increased less than in the hydroxyethyl starch group (2.7 [2.4; 2.8]; both P < 0.001 for saline vs. hydroxyethyl starch). Conclusions Resuscitation with hydroxyethyl starch maintained coherence in hemorrhagic shock. In contrast, saline only improved macro- but not microcirculation. Hemodynamic coherence might be influenced by the choice of resuscitation fluid.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference37 articles.

1. The global burden of injuries.;Am J Public Health,2000

2. Impact of hemorrhage on trauma outcome: An overview of epidemiology, clinical presentations, and therapeutic considerations.;J Trauma,2006

3. Microcirculatory alterations in traumatic hemorrhagic shock.;Crit Care Med,2014

4. Management of bleeding and coagulopathy following major trauma: An updated European guideline.;Crit Care,2013

5. Hemodynamic coherence and the rationale for monitoring the microcirculation.;Crit Care,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3