Identification and Characterization of GAL-021 as a Novel Breathing Control Modulator

Author:

Golder Francis J.1,Dax Scott1,Baby Santhosh M.1,Gruber Ryan1,Hoshi Toshinori1,Ideo Courtney1,Kennedy Andrew1,Peng Sean1,Puskovic Veljko1,Ritchie David1,Woodward Richard1,Wardle Robert L.1,Van Scott Michael R.1,Mannion James C.1,MacIntyre D. Euan1

Affiliation:

1. From the Department of Drug Discovery, Galleon Pharmaceuticals, Inc., Horsham, Pennsylvania (F.J.G., S.D., S.M.B., R.G., C.I., A.K., S.P., V.P., D.R., R.W., J.C.M., D.E.M.); Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania (T.H.); and Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina (R.L.W., M.R.V.S.).

Abstract

Abstract Background The authors describe the preclinical pharmacological properties of GAL-021, a novel peripheral chemoreceptor modulator. Methods The ventilatory effects of GAL-021 were characterized using tracheal pneumotachometry (n = 4 to 6), plethysmography (n = 5 to 6), arterial blood gas analyses (n = 6 to 11), and nasal capnography (n = 3 to 4) in naive animals and those subjected to morphine-induced respiratory depression. Morphine analgesia in rats was evaluated by tail-flick test (n = 6). Carotid body involvement in GAL-021 ventilatory effects was assessed by comparing responses in intact and carotid sinus nerve–transected rats. Hemodynamic effects of GAL-021 were evaluated in urethane-anesthetized rats (n = 7). The pharmacological profile of GAL-021 in vitro was investigated using radioligand binding, enzyme inhibition, and cellular electrophysiology assays. Results GAL-021 given intravenously stimulated ventilation and/or attenuated opiate-induced respiratory depression in rats, mice, and nonhuman primates, without decreasing morphine analgesia in rats. GAL-021 did not alter mean arterial pressure but produced a modest increase in heart rate. Ventilatory stimulation in rats was attenuated by carotid sinus nerve transection. GAL-021 inhibited KCa1.1 in GH3 cells, and the evoked ventilatory stimulation was attenuated in Slo1−/− mice lacking the pore-forming α-subunit of the KCa1.1 channel. Conclusions GAL-021 behaved as a breathing control modulator in rodents and nonhuman primates and diminished opioid-induced respiratory depression without compromising opioid analgesia. It acted predominantly at the carotid body, in part by inhibiting KCa1.1 channels. Its preclinical profile qualified the compound to enter clinical trials to assess effects on breathing control disorders such as drug (opioid)-induced respiratory depression and sleep apnea.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference39 articles.

1. A rude awakening—The perioperative sleep apnea epidemic.;N Engl J Med,2013

2. Caffeine therapy for apnoea of prematurity: Pharmacological treatment.;African J Pharm Pharmacol,2011

3. A new look at the respiratory stimulant doxapram.;CNS Drug Rev,2006

4. Peripheral neuropathy in patients treated with almitrine dimesylate.;Lancet,1985

5. Neuronal and muscular inclusions in rats with hindlimb dysfunction after treating with difluorobenzhydrylpiperadine.;Toxicol Pathol,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3