Affiliation:
1. From the Divisions of Nephrology (N.M.G.R., R.H.G.O.E., L.V.) and Vascular Medicine (B.-J.H.v.d.B.); the Departments of Internal Medicine (N.M.G.R., R.H.G.O.E., B.-J.H.v.d.B., L.V.), Nuclear Medicine (Y.C., H.J.V.), and Clinical Chemistry (J.P.v.S.); and the Laboratory of Genetic Metabolic Diseases (N.v.L.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
Abstract
Abstract
Background
Sodium-induced microcirculatory changes, endothelial surface layer alterations in particular, may play an important role in sodium-mediated blood pressure elevation. However, effects of acute and chronic sodium loading on the endothelial surface layer and microcirculation in humans have not been established. The objective of this study was to assess sodium-induced changes in blood pressure and body weight as primary outcomes and also in microvascular permeability, sublingual microcirculatory dimensions, and urinary glycosaminoglycan excretion in healthy subjects.
Methods
Twelve normotensive males followed both a low-sodium diet (less than 50 mmol/day) and a high-sodium diet (more than 200 mmol/day) for eight days in randomized order, separated by a crossover period. After the low-sodium diet, hypertonic saline (5 mmol sodium/liter body water) was administered intravenously in 30 min.
Results
Both sodium interventions did not change blood pressure. Body weight increased with 2.5 (95% CI, 1.7 to 3.2) kg (P < 0.001) after dietary sodium loading. Acute intravenous sodium loading resulted in increased transcapillary escape rate of 125I-labeled albumin (2.7 [0.1 to 5.3] % cpm · g−1 · h–1; P = 0.04), whereas chronic dietary sodium loading did not affect transcapillary escape rate of 125I-labeled albumin (−0.03 [−3.3 to 3.2] % cpm · g−1 · h–1; P = 1.00), despite similar increases of plasma sodium and osmolality. Acute intravenous sodium loading coincided with significantly increased plasma volume, as assessed by the distribution volume of albumin, and significantly decreased urinary excretion of heparan sulfate and chondroitin sulfate. These changes were not observed after dietary sodium loading.
Conclusions
Our results suggest that intravenous sodium loading has direct adverse effects on the endothelial surface layer, independent of blood pressure.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献