Affiliation:
1. From Decisions, Operations, and Technology Management Area, Anderson School of Management (V.V.M., K.R.), and Department of Anesthesiology and Perioperative Medicine (E.G., I.H.), University of California Los Angeles, Los Angeles, California; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (A.M.).
Abstract
Abstract
Background
Although prediction of hospital readmissions has been studied in medical patients, it has received relatively little attention in surgical patient populations. Published predictors require information only available at the moment of discharge. The authors hypothesized that machine learning approaches can be leveraged to accurately predict readmissions in postoperative patients from the emergency department. Further, the authors hypothesize that these approaches can accurately predict the risk of readmission much sooner than hospital discharge.
Methods
Using a cohort of surgical patients at a tertiary care academic medical center, surgical, demographic, lab, medication, care team, and current procedural terminology data were extracted from the electronic health record. The primary outcome was whether there existed a future hospital readmission originating from the emergency department within 30 days of surgery. Secondarily, the time interval from surgery to the prediction was analyzed at 0, 12, 24, 36, 48, and 60 h. Different machine learning models for predicting the primary outcome were evaluated with respect to the area under the receiver-operator characteristic curve metric using different permutations of the available features.
Results
Surgical hospital admissions (N = 34,532) from April 2013 to December 2016 were included in the analysis. Surgical and demographic features led to moderate discrimination for prediction after discharge (area under the curve: 0.74 to 0.76), whereas medication, consulting team, and current procedural terminology features did not improve the discrimination. Lab features improved discrimination, with gradient-boosted trees attaining the best performance (area under the curve: 0.866, SD 0.006). This performance was sustained during temporal validation with 2017 to 2018 data (area under the curve: 0.85 to 0.88). Lastly, the discrimination of the predictions calculated 36 h after surgery (area under the curve: 0.88 to 0.89) nearly matched those from time of discharge.
Conclusions
A machine learning approach to predicting postoperative readmission can produce hospital-specific models for accurately predicting 30-day readmissions via the emergency department. Moreover, these predictions can be confidently calculated at 36 h after surgery without consideration of discharge-level data.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献