Fiber-needle Swept-source Optical Coherence Tomography System for the Identification of the Epidural Space in Piglets

Author:

Kuo Wen-Chuan1,Kao Meng-Chun1,Chang Kuang-Yi1,Teng Wei-Nung1,Tsou Mei-Yung1,Chang Yin1,Ting Chien-Kun1

Affiliation:

1. From the Institute of Biophotonics (W.-C.K., M.-C.K.), Biophotonics and Molecular Imaging Research Center (W.-C.K.), National Yang-Ming University, Taipei, Taiwan; and Department of Anesthesiology, Taipei Veterans General Hospital and School of Medicine (W.-N.T., M.-Y.T., C.-K.T.), and Institute of Bioengineering (W.-N.T., Y.C.), National Yang-Ming University, Taipei, Taiwan.

Abstract

Abstract Background: Epidural needle insertion is traditionally a blind technique whose success depends on the experience of the operator. The authors describe a novel method using a fiber-needle–based swept-source optical coherence tomography (SSOCT) to identify epidural space. Methods: An optical fiber probe was placed into a hollow 18-gauge Tuohy needle. It was then inserted by an experienced anesthesiologist to continuously construct a series of two-dimensional SSOCT images by mechanically rotating the optical probe. To quantify this observation, both the average SSOCT signal intensities and their diagnostic potentials were assessed. The insertions were performed three times into both the lumbar and thoracic regions of five pigs using a paramedian approach. Results: A side-looking SSOCT is constructed to create a visual image of the underlying structures. The image criteria for the identification of the epidural space from the outside region were generated by the analysis of a training set (n = 100) of ex vivo data. The SSOCT image criteria for in vivo epidural space identification are high sensitivity (0.867 to 0.965) and high specificity (0.838 to 0.935). The mean value of the average signal intensities exhibits statistically significant differences (P < 0.01) and a high discriminatory capacity (area under curve = 0.88) between the epidural space and the outside tissues. Conclusions: This is the first study to introduce a SSOCT fiber probe embedded in a standard epidural needle. The authors anticipate that this technique will reduce the occurrence of failed epidural blocks and other complications such as dural punctures.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3