Intraoperative Oxidative Damage and Delirium after Cardiac Surgery

Author:

Lopez Marcos G.1,Hughes Christopher G.1,DeMatteo Anthony1,O’Neal Jason B.1,McNeil J. Brennan1,Shotwell Matthew S.1,Morse Jennifer1,Petracek Michael R.1,Shah Ashish S.1,Brown Nancy J.1,Billings Frederic T.1

Affiliation:

1. From the Divisions of Anesthesiology Critical Care Medicine (M.G.L., C.G.H., F.T.B.) and Cardiothoracic Anesthesiology (J.B.O., F.T.B.), Department of Anesthesiology; Department of Biostatistics (M.S.S., J.M.); Department of Cardiac Surgery (M.R.P., A.S.S.); Divisions of Allergy, Pulmonary, and Critical Care Medicine (J.B.M.) and Clinical Pharmacology (A.D., N.J.B., F.T.B.), Department of Medicin

Abstract

Abstract Background Mechanisms of postoperative delirium remain poorly understood, limiting development of effective treatments. We tested the hypothesis that intraoperative oxidative damage is associated with delirium and neuronal injury and that disruption of the blood–brain barrier modifies these associations. Methods In a prespecified cohort study of 400 cardiac surgery patients enrolled in a clinical trial of atorvastatin to reduce kidney injury and delirium, we measured plasma concentrations of F2-isoprostanes and isofurans using gas chromatography-mass spectrometry to quantify oxidative damage, ubiquitin carboxyl-terminal hydrolase isozyme L1 to quantify neuronal injury, and S100 calcium-binding protein B using enzyme-linked immunosorbent assays to quantify blood–brain barrier disruption before, during, and after surgery. We performed the Confusion Assessment Method for the Intensive Care Unit twice daily to diagnose delirium. We measured the independent associations between intraoperative F2-isoprostanes and isofurans and delirium (primary outcome) and postoperative ubiquitin carboxyl-terminal hydrolase isozyme L1 (secondary outcome), and we assessed if S100 calcium-binding protein B modified these associations. Results Delirium occurred in 109 of 400 (27.3%) patients for a median (10th, 90th percentile) of 1.0 (0.5, 3.0) days. In the total cohort, plasma ubiquitin carboxyl-terminal hydrolase isozyme L1 concentration was 6.3 ng/ml (2.7, 14.9) at baseline and 12.4 ng/ml (7.9, 31.2) on postoperative day 1. F2-isoprostanes and isofurans increased throughout surgery, and the log-transformed sum of intraoperative F2-isoprostanes and isofurans was independently associated with increased odds of postoperative delirium (odds ratio, 3.70 [95% CI, 1.41 to 9.70]; P = 0.008) and with increased postoperative ubiquitin carboxyl-terminal hydrolase isozyme L1 (ratio of geometric means, 1.42 [1.11 to 1.81]; P = 0.005). The association between increased intraoperative F2-isoprostanes and isofurans and increased postoperative ubiquitin carboxyl-terminal hydrolase isozyme L1 was amplified in patients with elevated S100 calcium-binding protein B (P = 0.049). Conclusions Intraoperative oxidative damage was associated with increased postoperative delirium and neuronal injury, and the association between oxidative damage and neuronal injury was stronger among patients with increased blood–brain barrier disruption. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3