Noninvasive Tracking of Anesthesia Neurotoxicity in the Developing Rodent Brain

Author:

Makaryus Rany1,Lee Hedok1,Robinson John1,Enikolopov Grigori1,Benveniste Helene1

Affiliation:

1. From the Department of Anesthesiology (R.M., G.E.), the Department of Psychology (J.R.), and the Center for Developmental Genetics (G.E.), Stony Brook Medicine, Stony Brook, New York; and the Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut (H.L., H.B.).

Abstract

Abstract Background Potential deleterious effect of multiple anesthesia exposures on the developing brain remains a clinical concern. We hypothesized that multiple neonatal anesthesia exposures are more detrimental to brain maturation than an equivalent single exposure, with more pronounced long-term behavioral consequences. We designed a translational approach using proton magnetic resonance spectroscopy in rodents, noninvasively tracking the neuronal marker N-acetyl-aspartate, in addition to tracking behavioral outcomes. Methods Trajectories of N-acetyl-aspartate in anesthesia naïve rats (n = 62, postnatal day 5 to 35) were determined using proton magnetic resonance spectroscopy, creating an “N-acetyl-aspartate growth chart.” This chart was used to compare the effects of a single 6-h sevoflurane exposure (postnatal day 7) to three 2-h exposures (postnatal days 5, 7, 10). Long-term effects on behavior were separately examined utilizing novel object recognition, open field testing, and Barnes maze tasks. Results Utilizing the N-acetyl-aspartate growth chart, deviations from the normal trajectory were documented in both single and multiple exposure groups, with z-scores (mean ± SD) of –0.80 ± 0.58 (P = 0.003) and –1.87 ± 0.58 (P = 0.002), respectively. Behavioral testing revealed that, in comparison with unexposed and single-exposed, multiple-exposed animals spent the least time with the novel object in novel object recognition (F(2,44) = 4.65, P = 0.015), traveled the least distance in open field testing (F(2,57) = 4.44, P = 0.016), but exhibited no learning deficits in the Barnes maze. Conclusions Our data demonstrate the feasibility of using the biomarker N-acetyl-aspartate, measured noninvasively using proton magnetic resonance spectroscopy, for longitudinally monitoring anesthesia-induced neurotoxicity. These results also indicate that the neonatal rodent brain is more vulnerable to multiple anesthesia exposures than to a single exposure of the same cumulative duration.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3