Intraoperative Frozen Section Risk Assessment Accurately Tailors the Surgical Staging in Patients Affected by Early-Stage Endometrial Cancer: The Application of 2 Different Risk Algorithms

Author:

Sala Paolo,Morotti Matteo,Menada Mario Valenzano,Cannavino Elisa,Maffeo Ilaria,Abete Luca,Fulcheri Ezio,Menoni Stefania,Venturini Pierluigi,Papadia Andrea

Abstract

ObjectiveThe aim of this study was to investigate the frozen section (FS) accuracy in tailoring the surgical staging of patients affected by endometrial cancer, using 2 different risk classifications.Methods/MaterialsA retrospective analysis of 331 women affected by type I endometrial cancer and submitted to FS assessment at the time of surgery. Pathologic features were examined on the frozen and permanent sections according to both the GOG33 and the Mayo Clinic algorithms. We compared the 2 models through the determination of Landis and Koch kappa statistics, concordance rate, sensitivity, specificity, positive predictive value, and negative predictive value for each risk algorithm, to assess whether there are differences in FS accuracy depending on the model used.ResultsThe observed agreement between the frozen and permanent sections was respectively good (k = 0.790) for the GOG33 and optimal (k = 0.810) for the Mayo classification. Applying the GOG33 algorithm, 20 patients (6.7%) were moved to an upper risk status, and 20 (6.7%) were moved to a lower risk status on the permanent section; the concordance rate was 86.5%. With the Mayo Clinic algorithm, discordant cases between frozen and permanent sections were 19 (7.6%), and the risk of lymphatic spread was underestimated only in 1 case (0.4%); the concordance rate was 92.4%. The sensitivity, specificity, positive predictive value, and negative predictive value for the GOG33 were 92%, 94%, 92%, and 93%, whereas with the Mayo algorithm, these were 98%, 91%, 77%, and 99%, respectively.ConclusionsAccording to higher correlation rate and observed agreement (92.4% vs 86.5% and k = 0.810 vs 0.790, respectively), the Mayo Clinic algorithm minimizes the number of patients undertreated at the time of surgery than the GOG33 classification and can be adopted as an FS algorithm to tailor the surgical treatment of early-stage endometrial cancer even in different centers.

Publisher

BMJ

Subject

Obstetrics and Gynecology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3