Optimization of tissue microarray technique for breast cancer patients: a short communication

Author:

Harfouch Rim M.12,Al-Shehabi Zuheir32,Asaad Remal1,Aljamali Majd4,Issa Rana3,Elshimali Yahya5,Vadgama Jay5

Affiliation:

1. Department of Microbiology and Biochemistry, Faculty of Pharmacy

2. Cancer Research Center (CRCTU), Tishreen University Hospital, Latakia

3. Department of Pathology, Faculty of Medicine, Tishreen University

4. Faculty of Pharmacy, Damascus University, Damascus, Syria

5. Department of Pathology, Faculty of Medicine, Charles Drew University of Medicine and Science/University of California Los Angeles (UCLA), California, USA

Abstract

Background: Tissue microarray (TMA) is a novel technique for studying different types of cancer tissues in one block. TMA is not yet established in Syria, so we aimed in this project to apply and set the most optimal conditions of TMA creation of breast cancer tissues at the Pathology Department of our institute. Materials and Methods: Eighty-eight blocks of breast cancer tissues were selected, considering the inclusion criteria. The tissue specimens of breast cancer patients were manually placed in the block by punching a core from a paraffin block, which was then released into a recipient block using a small trocar. Three different conditions were tested on the constructed TMA block. Results: We determined the most effective parameters that proved high quality: incubating the newly constructed block at a temperature of 43°C for 24 h in the oven and then cutting it the next day after cooling it to room temperature; also, cutting with a 5 μm thickness created the preferable stained slides later. CD3 staining showed high expression of tumor-infiltrating lymphocytes among triple-negative breast cancer patients and high expression of CD3 in triple-negative cancer patients. Conclusion: The optimization of parameters presented in our study resulted in perfect TMA generation and successful immunohistochemistry staining for cancer research at our institution.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3