Screening of diagnostic biomarkers for ferroptosis-related osteoarthritis and construction of a risk-prognosis model

Author:

Yan Yiqun12,He Junyan12,Cheng Wendan12

Affiliation:

1. Department of Orthopedics

2. Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui province, People’s Republic of China

Abstract

Background: Osteoarthritis (OA) is the most prevalent and commonly chronic joint disease that frequently develops among the elderly population. It is not just a single tissue that is affected, but rather a pathology involving the entire joint. Among them, synovitis is a key pathological change in OA. Ferroptosis is a newly discovered form of cell death that results from the buildup of lipid peroxidation. However, the role and impact of it in OA are yet to be explored. Objective: The key to this work is to uncover the mechanisms of ferroptosis-related OA pathogenesis and develop more novel diagnostic biomarkers to facilitate the diagnostic and therapeutic of OA. Materials and methods: Download ferroptosis-related genes and OA synovial chip datasets separately from the FerrDB and Gene Expression Omnibus databases. Identify ferroptosis differentially expressed genes using R software, obtain the intersection genes through two machine learning algorithms, and obtain diagnostic biomarkers after logistic regression analysis. Verify the diagnostic and therapeutic efficacy of specific genes for OA through the construction of clinical risk prognostic models using ROC curves and nomogram. Simultaneously, correlations between specific genes and OA immune cell infiltration co-expression were constructed. Finally, verify the differential presentation of specific genes in OA and health control synovium. Results: Obtain 38 ferroptosis differentially expressed genes through screening. Based on machine learning algorithms and logistic regression analysis, select AGPS, BRD4, RBMS1, and EGR1 as diagnostic biomarker genes. The diagnostic and therapeutic efficacy of the four specific genes for OA has been validated by ROC curves and nomogram of clinical risk prognostic models. The analysis of immune cell infiltration and correlation suggests a close association between specific genes and OA immune cell infiltration. Further revealing the diagnostic value of specific genes for OA by the differential presentation analysis of their differential presentation in synovial tissue from OA and health control. Conclusion: This study identified four diagnostic biomarkers for OA that are associated with iron death. The establishment of a risk-prognostic model is conducive to the premature diagnosis of OA, evaluating functional recovery during rehabilitation, and guidance for subsequent treatment.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3