SARS-CoV-2 spike protein reduces burst activities in neurons measured by micro-electrode arrays

Author:

Salvador Melanie1,Tseng Noah1,Park Camdon1,Williams Grace1,Vethan Arianne1,Thomas Grant1,Baker John1,Hemry Joseph1,Hammond Emma1,Freeburg Paige1,Chou Guan-Wen2,Taylor Nick1,Lu Yi-Fan1

Affiliation:

1. Biology Department, Westmont College, California

2. Department of Computer Science, North Carolina State University, North Carolina, USA

Abstract

Background: Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) caused a large-scale global pandemic between 2020 and 2022. Despite efforts to understand its biological and pathogenic mechanisms, the viral impact on the neurological systems remains unclear. The main goal of this study was to quantify the neurological phenotypes induced by the SARS-CoV-2 spike protein in neurons, as measured by in-vitro multiwell micro-electrode arrays (MEAs). Materials and methods: The authors extracted the whole-brain neurons from the newborn P1 mice and plated them on multiwell MEAs and administered purified recombinant spike proteins (both S1 and S2 subunits) from the SARS-CoV-2 virus. The signals from the MEAs were transmitted from an amplifier to a high-performance computer for recording and analysis using an in-house developed algorithm to quantify neuronal phenotypes. Results: Primary among the phenotypic features analyzed, we discovered that neuronal treatment with spike 1 protein (S1) protein from SARS-CoV-2 decreased the mean burst numbers observed on each electrode, an effect that could be rescued with an anti-S1 antibody. Conversely, this mean burst number decrease was not observed with spike 2 protein (S2) treatment. Finally, our data strongly suggest that the receptor binding domain of S1 is responsible for the reduction in neuronal burst activity. Conclusion: Overall, our results strongly indicate that spike proteins may play an important role in altering neuronal phenotypes, specifically the burst patterns, when neurons are exposed during early development.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3