The utilization of three-dimensional imaging and three-dimensional-printed model in autologous microtia reconstruction

Author:

Koento Trimartani1,Damara Fachreza Aryo23,Reksodiputro Mirta Hediyati1,Safitri Eka Dian1,Anatriera Raden Ayu1,Widodo Dini Widiarni1,Dewi Dwi Juliana1

Affiliation:

1. Department of Otorhinolaryngology-HHead and Neck Surgery, Faculty of Medicine Universitas Indonesia-Cipto Mangunkusumo National Hospital, Jakarta, Indonesia

2. Faculty of Medicine, Universitas Padjadjaran-Dr.Hasan Sadikin Hospital, Bandung

3. Department of Surgery, Yale School of Medicine, New Haven, CT

Abstract

Background: The use of three-dimensional (3D) technology helps surgeons in performing autologous microtia reconstruction due to more accurate measurements and a better precision template model. However, the technical aspects of using a 3D imaging and 3D-printed model and the difference in outcomes postoperatively remain poorly reviewed. Purpose: This systematic review aimed to provide the current evidence of the benefit and technical aspects of using 3D technology in autologous microtia reconstruction. Method: A systematic literature search was conducted across multiple databases: Medline, Embase, Google Scholar, and Central until June 2022. Studies that evaluated the use of 3D imaging or 3D-printed models for autogenous microtia reconstruction were selected. The quality of the included studies was also assessed with respect to the study design. Result: A systematic literature search yielded 17 articles with a combination of observational and case report studies. Overall, 3D imaging showed a precise measurement for preoperative costal cartilage assessment. Compared to the 2D template, the utilization of a 3D-printed template provided a higher similarity rate relative to the unaffected ear, higher patient and surgeon satisfaction, and lower surgical time. Most 3D templates were fabricated using polylactic acid material on fused deposition modelling printers. The template costs were ranging from $1 to $4.5 depending on the material used. Conclusion: 3D imaging and 3D-printed templates could improve the outcome of autologous microtia reconstruction. However, the quality of the existing evidence remains low due to the heterogeneity of the reported outcomes. Further studies with more adequate comparability and defined outcomes are still required.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3