Physiological Responses and Performance of Simulated High-Rise Firefighting

Author:

Stevenson Richard Daniel MarkORCID,Warwick Joseph,Bilzon James Lee JohnORCID

Abstract

Objective The aim of the study is to determine the physiological effects of breathing apparatus and ascent strategies during a simulated 120-m vertical high-rise firefighting ascent. Methods Twenty-eight firefighters completed four high-rise firefighting trials wearing standard- or extended-duration breathing apparatus with continuous ascent (SDBA-C/EDBA-C) or with breaks (SDBA-B/EDBA-B). Task time, heart rate, ratings of perceived exertion, core body temperature, and thermal comfort were recorded at predetermined elevations. Results Task time took significantly longer during the EDBA-C compared with SDBA-C trial. Heart rate (at 40, 80, and 100 m) was significantly lower in trials following breaks compared with the continuous trials. Core body temperature rose by 0.11°C every 10 m of ascent. During the SDBA trials, 89% to 96% of firefighters activated their low air alarm compared with only 7% in EDBA. Conclusions Firefighters should wear EDBA beyond 80 m of ascent and are encouraged to take regular breaks.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3