Artificial Intelligence in Dermatology: A Systematic Review of Its Applications in Melanoma and Keratinocyte Carcinoma Diagnosis

Author:

Jairath Neil1,Pahalyants Vartan1,Shah Rohan2,Weed Jason1,Carucci John A.1,Criscito Maressa C.1

Affiliation:

1. The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York

2. Rutgers University School of Medicine, Newark, New Jersey

Abstract

BACKGROUND Limited access to dermatologic care may pose an obstacle to the early detection and intervention of cutaneous malignancies. The role of artificial intelligence (AI) in skin cancer diagnosis may alleviate potential care gaps. OBJECTIVE The aim of this systematic review was to offer an in-depth exploration of published AI algorithms trained on dermoscopic and macroscopic clinical images for the diagnosis of melanoma, basal cell carcinoma, and cutaneous squamous cell carcinoma (cSCC). METHODS Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, a systematic review was conducted on peer-reviewed articles published between January 1, 2000, and January 26, 2023. RESULTS AND DISCUSSION Among the 232 studies in this review, the overall accuracy, sensitivity, and specificity of AI for tumor detection averaged 90%, 87%, and 91%, respectively. Model performance improved with time. Despite seemingly impressive performance, the paucity of external validation and limited representation of cSCC and skin of color in the data sets limits the generalizability of the current models. In addition, dermatologists coauthored only 12.9% of all studies included in the review. Moving forward, it is imperative to prioritize robustness in data reporting, inclusivity in data collection, and interdisciplinary collaboration to ensure the development of equitable and effective AI tools.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3