Autofluorescence Excitation Imaging of Nonmelanoma Skin Cancer for Margin Assessment Before Mohs Micrographic Surgery: A Pilot Study

Author:

Ortiz Arisa E.1,Ahluwalia Jusleen1,Anderson R. Rox2,Franco Walfre234,Brian Jiang Shang I.1

Affiliation:

1. Department of Dermatology, University of California, San Diego School of Medicine, La Jolla, California;

2. Wellman Center of Photomedicine, Department of Dermatology Cosmetic and Laser Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;

3. Department of Biomedical Engineering, University of Massachusetts Lowell, Massachusetts;

4. Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts

Abstract

BACKGROUND Autofluorescence photography can detect specific light–tissue interactions and record important pathophysiological changes associated with nonmelanoma skin cancer (NMSC), which has been ascribed to the fluorescence of an aromatic amino acid, tryptophan. OBJECTIVE To assess the impact of a novel, autofluorescence imaging (AFI) device on margin control for NMSCs before Mohs micrographic surgery (MMS) in an effort to decrease overall operating time. METHODS Before the initial stage of MMS, NMSCs were measured with a 2-mm margin as standard of care (normal margin). The tumor was then imaged with the AFI device. A 2-mm margin was drawn around the fluorescent area captured by the AFI device and was referred to as the camera margin. The tumor was excised based on the normal margin and evaluated on frozen histological section. RESULTS Imaging based on the AFI device resulted in appropriate recommendations for margin control in 8 of 11 tumors. Four of these tumors did not fluoresce and demonstrated a lack of tumor residuum on stage I specimen, as anticipated. There were no side effects from the AFI device. CONCLUSION This is an initial pilot study that supports the use of a novel, noninvasive imaging device to help with margin assessment before MMS. On optimization, this device has potential to extend applicability to surgical excisions for tumors that do not fulfill criteria for MMS.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3