NOS3 prevents MMP-9, and MMP-13 induced extracellular matrix proteolytic degradation through specific microRNA-targeted expression of extracellular matrix metalloproteinase inducer in hypertension-related atherosclerosis

Author:

Ramírez-Carracedo Rafael1,Hernández Ignacio12,Moreno-Gómez-Toledano Rafael13,Díez-Mata Javier1,Tesoro Laura1,González-Cucharero Claudia1,Jiménez-Guirado Beatriz1,Alcharani Nunzio1,Botana Laura1,Saura Marta23,Zamorano Jose L.24,Zaragoza Carlos12

Affiliation:

1. Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS)

2. Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos

3. Universidad de Alcalá, Unidad de Fisiología, Departamento de Biología de Sistemas, Alcalá de Henares

4. Departamento de Cardiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain

Abstract

Background: Endothelial nitric oxide synthase (NOS3) elicits atheroprotection by preventing extracellular matrix (ECM) proteolytic degradation through inhibition of extracellular matrix metalloproteinase inducer (EMMPRIN) and collagenase MMP-13 by still unknown mechanisms. Methods: C57BL/6 mice lacking ApoE, NOS3, and/or MMP13 were fed with a high-fat diet for 6 weeks. Entire aortas were extracted and frozen to analyze protein and nucleic acid expression. Atherosclerotic plaques were detected by ultrasound imaging, Oil Red O (ORO) staining, and Western Blot. RNA-seq and RT-qPCR were performed to evaluate EMMPRIN, MMP-9, and EMMPRIN-targeting miRNAs. Mouse aortic endothelial cells (MAEC) were incubated to assess the role of active MMP-13 over MMP-9. One-way ANOVA or Kruskal–Wallis tests were performed to determine statistical differences. Results: Lack of NOS3 in ApoE null mice fed with a high-fat diet increased severe plaque accumulation, vessel wall widening, and high mortality, along with EMMPRIN-induced expression by upregulation of miRNAs 46a-5p and 486-5p. However, knocking out MMP-13 in ApoE/NOS3-deficient mice was sufficient to prevent mortality (66.6 vs. 26.6%), plaque progression (23.1 vs. 8.8%), and MMP-9 expression, as confirmed in murine aortic endothelial cell (MAEC) cultures, in which MMP-9 was upregulated by incubation with active recombinant MMP-13, suggesting MMP-9 as a new target of MMP-13 in atherosclerosis. Conclusion: We describe a novel mechanism by which the absence of NOS3 may worsen atherosclerosis through EMMPRIN-induced ECM proteolytic degradation by targeting the expression of miRNAs 146a-5p and 485-5p. Focusing on NOS3 regulation of ECM degradation could be a promising approach in the management of atherosclerosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3