Long non-coding RNA TLR8-AS1 induces preeclampsia through increasing TLR8/STAT1 axis

Author:

Peng Chuyu1,Zhu Jianbin2,Guo Hong3,Zhao Ling2,Wu Feifei3,Liu Bo4

Affiliation:

1. Department of Obstetrics, The Haining Maternal and Child Health Hospital, Haining

2. Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning

3. Department of Obstetrics, Changsha Ning Er Maternity Hospital, Changsha

4. Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China

Abstract

Objective: Our current study tried to assay the role of long noncoding RNAs (lncRNAs) TLR8-AS1 in regulating preeclampsia. Methods: TLR8-AS1 expression was examined in the clinical placental tissues of preeclampsia patients and the trophoblast cells induced by lipopolysaccharide (LPS). Then, different lentivirus was infected into trophoblast cells to study the role of TLR8-AS1 in cell functions. Furthermore, interactions among TLR8-AS1, signal transducer and activator of transcription 1 (STAT1) and toll-like receptor 8 (TLR8) were determined. A rat model of preeclampsia induced by N(omega)-nitro-L-arginine methyl ester was developed to validate the in-vitro findings. Results: High expression of TLR8-AS1 was detected in placental tissues of preeclampsia patients and LPS-induced trophoblast cells. In addition, overexpression of TLR8-AS1 arrested the proliferation, migration and invasion of trophoblast cells, which was related to the upregulation of TLR8 expression. Mechanistically, TLR8-AS1 recruited STAT1 to bind to the TLR8 promoter region, and thus promoted the transcription of TLR8. Meanwhile, overexpression of TLR8-AS1 was shown to aggravate preeclampsia by elevating TLR8 in vivo. Conclusion: Our study confirmed that TLR8-AS1 aggravated the progression of preeclampsia through increasing the expression of STAT1 and TLR8.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology,Internal Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3