Evaluation of the oscillometric method for noninvasive blood pressure measurement during cuff deflation and cuff inflation with reference to intra-arterial blood pressure

Author:

Celler Branko G.1,Yong Andy23,Rubenis Imants2,Butlin Mark3,Argha Ahmadreza4,Rehan Rajan2,Avolio Alberto3

Affiliation:

1. Biomedical Systems Research Laboratory, University of New South Wales

2. Concord Repatriation Hospital, Cardiology, University of Sydney

3. Faculty of Medicine, Health and Human Sciences, Macquarie University

4. Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia

Abstract

There is little quantitative clinical data available to support blood pressure measurement accuracy during cuff inflation. In this study of 35 male and 5 female lightly anaesthetized subjects aged 64.1 ± 9.6 years, we evaluate and compare the performance of both the oscillometric ratio and gradient methods during cuff deflation and cuff inflation with reference to intra-arterial measurements. We show that the oscillometric waveform envelopes (OWE), which are key to both methods, exhibit significant variability in both shape and smoothness leading to at least 15% error in the determination of mean pressure (MP). We confirm the observation from our previous studies that K1 Korotkoff sounds underestimate systolic blood pressure (SBP) and note that this underestimation is increased during cuff inflation. The estimation of diastolic blood pressure (DBP) is generally accurate for both the ratio and the gradient method, with the latter showing a significant increase during inflation. Since the gradient method estimates SBP and DBP from points of maximum gradient on each OWE recorded, it may offer significant benefits over the ratio method. However, we have shown that the ratio method can be optimized for any data set to achieve either a minimum mean error (ME) of close to 0 mmHg or minimum root mean square error (RMSE) with standard deviation (SD) of <5.0 mmHg. We conclude that whilst cuff inflation may offer some advantages, these are neither significant nor substantial, leaving as the only benefit, the potential for more rapid measurement and less patient discomfort.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3