Defective natriuresis contributes to hyperkalemia in db/db mice during potassium supplementation

Author:

Shu Ting-Ting1234,Gao Zhong-Xiuzi1234,Mao Zi-Hui1234,Yang Yuan-Yuan1234,Fu Wen-Jia1234,Pan Shao-Kang1234,Zhao Qian-Qian1234,Liu Dong-Wei1234,Liu Zhang-Suo1234,Wu Peng1234

Affiliation:

1. Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University

2. Institute of Nephrology, Zhengzhou University

3. Henan Province Research Center for Kidney Disease

4. Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China

Abstract

Objectives: Potassium supplementation reduces blood pressure and the occurrence of cardiovascular diseases, with K+-induced natriuresis playing a potential key role in this process. However, whether these beneficial effects occur in diabetes remains unknown. Methods: In this study, we examined the impact of high-K+ intake on renal Na+/K+ transport by determining the expression of major apical Na+ transporters, diuretics responses (as a proxy for specific Na+ transporter function), urinary Na+/K+ excretion, and plasma Na+/K+ concentrations in db/db mice, a model of type 2 diabetes mellitus. Results: Although db/m mice exhibited increased fractional excretion of sodium (FENa) and fractional excretion of potassium (FEK) under high-K+ intake, these responses were largely blunted in db/db mice, suggesting impaired K+-induced natriuresis and kaliuresis in diabetes. Consequently, high-K+ intake increased plasma K+ levels in db/db mice, which could be attributed to the abnormal activity of sodium-hydrogen exchanger 3 (NHE3), sodium-chloride cotransporter (NCC), and epithelial Na+ channel (ENaC), as high-K+ intake could not effectively decrease NHE3 and NCC and increase ENaC expression and activity in the diabetic group. Inhibition of NCC by hydrochlorothiazide could correct the hyperkalemia in db/db mice fed a high-K+ diet, indicating a key role for NCC in K+-loaded diabetic mice. Treatment with metformin enhanced urinary Na+/K+ excretion and normalized plasma K+ levels in db/db mice with a high-K+ diet, at least partially, by suppressing NCC activity. Conclusion: Collectively, the impaired K+-induced natriuresis in diabetic mice under high-K+ intake may be primarily attributed to impaired NCC-mediated renal K+ excretion, despite the role of NHE3.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3