Instrumental in Surgery

Author:

Casey Vincent J.12ORCID,McNamara Laoise M.12

Affiliation:

1. Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, University of Galway, Ireland

2. CÚRAM, SFI Research Centre for Medical Devices, Galway, Ireland

Abstract

Objective: To provide an informed understanding of existing energy-based surgical cutting technologies and aerosol-generating surgical procedures. We provide a perspective on the future innovation and research potential in this space for the benefit of surgeons, physicians, engineers, and researchers alike. Background: Surgery is a treatment for many medical conditions, the success of which depends on surgical cutting instruments that enable surgeons to conduct surgical procedures for tissue cutting and manipulation. Energy-based surgical cutting tools improve accuracy and limit unnecessary destruction of healthy tissues and cells, but can generate surgical smoke and aerosols, which can be handled using surgical smoke evacuation technology. Methods: A narrative review was conducted to explore existing literature describing the history and development of energy-based surgical instruments, their mechanisms of action, aerosol-generating medical procedures, surgical smoke and aerosols from aerosol-generating medical procedures, and the recommended mitigation strategies, as well as research on rapid biological tissue analyzing devices to date. Conclusions: Smoke evacuation technology may provide diagnostic information regarding tissue pathology, which could eliminate health concerns and revolutionize surgical accuracy. However, further research into surgical smoke is required to quantify the measurable risk to health it poses, the cutting conditions, under which it is generated and to develop advanced diagnostic approaches using this information.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3