Effects of Stimulus Type on 16-kHz Detection Thresholds

Author:

Buss Emily1,Kane Stacey G.12,Young Kathryn S.2,Gratzek Chloe B.2,Bishop Danielle M.3,Miller Margaret K.3,Porter Heather L.3,Leibold Lori J.3,Stecker G. Christopher3,Monson Brian B.4

Affiliation:

1. Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

2. Department of Health Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

3. Center for Hearing Research, Boys Town National Research Hospital, Omaha, Nebraska, USA

4. Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA.

Abstract

Objectives: Audiometric testing typically does not include frequencies above 8 kHz. However, recent research suggests that extended high-frequency (EHF) sensitivity could affect hearing in natural communication environments. Clinical assessment of hearing often employs pure tones and frequency-modulated (FM) tones interchangeably regardless of frequency. The present study was designed to evaluate how the stimulus chosen to measure EHF thresholds affects estimates of hearing sensitivity. Design: The first experiment used standard audiometric procedures to measure 8- and 16-kHz thresholds for 5- to 28-year olds with normal hearing in the standard audiometric range (250 to 8000 Hz). Stimuli were steady tones, pulsed tones, and FM tones. The second experiment tested 18- to 28-year olds with normal hearing in the standard audiometric range using psychophysical procedures to evaluate how changes in sensitivity as a function of frequency affect detection of stimuli that differ with respect to bandwidth, including bands of noise. Thresholds were measured using steady tones, pulsed tones, FM tones, narrow bands of noise, and one-third-octave bands of noise at a range of center frequencies in one ear. Results: In experiment 1, thresholds improved with increasing age at 8 kHz and worsened with increasing age at 16 kHz. Thresholds for individual participants were relatively similar for steady, pulsed, and FM tones at 8 kHz. At 16 kHz, mean thresholds were approximately 5 dB lower for FM tones than for steady or pulsed tones. This stimulus effect did not differ as a function of age. Experiment 2 replicated this greater stimulus effect at 16 kHz than at 8 kHz and showed that the slope of the audibility curve accounted for these effects. Conclusions: Contrary to prior expectations, there was no evidence that the choice of stimulus type affected school-age children more than adults. For individual participants, audiometric thresholds at 16 kHz were as much as 20 dB lower for FM tones than for steady tones. Threshold differences across stimuli at 16 kHz were predicted by differences in audibility across frequency, which can vary markedly between listeners. These results highlight the importance of considering spectral width of the stimulus used to evaluate EHF thresholds.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3