Auditory Neural Responses and Communicative Functioning in Children With Microcephaly Related to Congenital Zika Syndrome

Author:

Key Alexandra P.12,Powell Sarah L.1,Cavalcante Juliana3,Frizzo Ana4,Mandra Patricia3,Tavares Adriana3,Menezes Pedro5,Hood Linda J.1

Affiliation:

1. Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA

2. Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA

3. Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil

4. Department of Speech Therapy, São Paulo State University, Marília, São Paulo, Brazil.

5. Hearing and Technology Laboratory, Exact Sciences Center, State University of Health Sciences of Alagoas, Maceió, Brazil

Abstract

Objectives: Children with microcephaly exhibit neurodevelopmental delays and compromised communicative functioning, yielding challenges for clinical assessment and informed intervention. This study characterized auditory neural function and communication abilities in children with microcephaly due to congenital Zika syndrome (CZS). Design: Click-evoked auditory brainstem responses (ABR) at fast and slow stimulation rates and natural speech-evoked cortical auditory evoked potentials (CAEP) were recorded in 25 Brazilian children with microcephaly related to CZS (M age: 5.93 ± 0.62 years) and a comparison group of 25 healthy children (M age: 5.59 ± 0.80 years) matched on age, sex, ethnicity, and socioeconomic status. Communication abilities in daily life were evaluated using caregiver reports on Vineland Adaptive Behavior Scales-3. Results: Caregivers of children with microcephaly reported significantly lower than typical adaptive functioning in the communication and socialization domains. ABR wave I latency did not differ significantly between the groups, suggesting comparable peripheral auditory function. ABR wave V absolute latency and waves I-V interwave latency were significantly shorter in the microcephaly group for both ears and rates. CAEP analyses identified reduced N2 amplitudes in children with microcephaly as well as limited evidence of speech sound differentiation, evidenced mainly by the N2 response latency. Conversely, in the comparison group, speech sound differences were observed for both the P1 and N2 latencies. Exploratory analyses in the microcephaly group indicated that more adaptive communication was associated with greater speech sound differences in the P1 and N2 amplitudes. The trimester of virus exposure did not have an effect on the ABRs or CAEPs. Conclusions: Microcephaly related to CZS is associated with alterations in subcortical and cortical auditory neural function. Reduced ABR latencies differ from previous reports, possibly due to the older age of this cohort and careful assessment of peripheral auditory function. Cortical speech sound detection and differentiation are present but reduced in children with microcephaly. Associations between communication performance in daily life and CAEPs highlight the value of auditory evoked potentials in assessing clinical populations with significant neurodevelopmental disabilities.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Speech and Hearing,Otorhinolaryngology

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3