Numerical Simulations of the Epley Maneuver With Clinical Implications

Author:

Arán-Tapia Ismael123,Soto-Varela Andrés456,Pérez-Muñuzuri Vicente13,Santos-Pérez Sofía456,Arán Ismael7,Muñuzuri Alberto P.12

Affiliation:

1. Group of Non-Linear Physics, Department of Physics, Campus Sur, University of Santiago de Compostela, Santiago de Compostela, Spain

2. Galician Center for Mathematical Research and Technology, Santiago de Compostela, Spain

3. Cross-disciplinary Research Center in Environmental Technologies (CRETUS), University of Santiago de Compostela, Santiago de Compostela, Spain

4. Division of Neurotology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain

5. Department of Surgery and Medical-Surgical Specialities, Universidade de Santiago de Compostela, Santiago de Compostela, Spain

6. Health Research Institute of Santiago, Santiago de Compostela, Spain; and

7. Department of Otorhinolaryngology, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain.

Abstract

Objectives: Canalith repositioning procedures to treat benign paroxysmal positional vertigo are often applied following standardized criteria, without considering the possible anatomical singularities of the membranous labyrinth for each individual. As a result, certain patients may become refractory to the treatment due to significant deviations from the ideal membranous labyrinth, that was considered when the maneuvers were designed. This study aims to understand the dynamics of the endolymphatic fluid and otoconia, within the membranous labyrinth geometry, which may contribute to the ineffectiveness of the Epley maneuver. Simultaneously, the study seeks to explore methods to avoid or reduce treatment failure. Design: We conducted a study on the Epley maneuver using numerical simulations based on a three-dimensional medical image reconstruction of the human left membranous labyrinth. A high-quality micro-computed tomography of a human temporal bone specimen was utilized for the image reconstruction, and a mathematical model for the endolymphatic fluid was developed and coupled with a spherical particle model representing otoconia inside the fluid. This allowed us to measure the position and time of each particle throughout all the steps of the maneuver, using equations that describe the physics behind benign paroxysmal positional vertigo. Results: Numerical simulations of the standard Epley maneuver applied to this membranous labyrinth model yielded unsatisfactory results, as otoconia do not reach the frontside of the utricle, which in this study is used as the measure of success. The resting times between subsequent steps indicated that longer intervals are required for smaller otoconia. Using different angles of rotation can prevent otoconia from entering the superior semicircular canal or the posterior ampulla. Steps 3, 4, and 5 exhibited a heightened susceptibility to failure, as otoconia could be accidentally displaced into these regions. Conclusions: We demonstrate that modifying the Epley maneuver based on the numerical results obtained in the membranous labyrinth of the human specimen under study can have a significant effect on the success or failure of the treatment. The use of numerical simulations appears to be a useful tool for future canalith repositioning procedures that aim to personalize the treatment by modifying the rotation planes currently defined as the standard criteria.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3