Task-Specific Rapid Auditory Perceptual Learning in Adult Cochlear Implant Recipients: What Could It Mean for Speech Recognition

Author:

Khayr Ranin12,Khnifes Riyad12,Shpak Talma2,Banai Karen1

Affiliation:

1. Department of Communication Sciences and Disorders, Faculty of Social Welfare and Health Studies, University of Haifa, Haifa, Israel

2. Department of Otolaryngology—Head and Neck Surgery, Bnai-Zion Medical Center, Technion-Bruce Rappaport Faculty of Medicine, Haifa, Israel.

Abstract

Objectives: Speech recognition in cochlear implant (CI) recipients is quite variable, particularly in challenging listening conditions. Demographic, audiological, and cognitive factors explain some, but not all, of this variance. The literature suggests that rapid auditory perceptual learning explains unique variance in speech recognition in listeners with normal hearing and those with hearing loss. The present study focuses on the early adaptation phase of task-specific rapid auditory perceptual learning. It investigates whether adult CI recipients exhibit this learning and, if so, whether it accounts for portions of the variance in their recognition of fast speech and speech in noise. Design: Thirty-six adult CI recipients (ages = 35 to 77, M = 55) completed a battery of general speech recognition tests (sentences in speech-shaped noise, four-talker babble noise, and natural-fast speech), cognitive measures (vocabulary, working memory, attention, and verbal processing speed), and a rapid auditory perceptual learning task with time-compressed speech. Accuracy in the general speech recognition tasks was modeled with a series of generalized mixed models that accounted for demographic, audiological, and cognitive factors before accounting for the contribution of task-specific rapid auditory perceptual learning of time-compressed speech. Results: Most CI recipients exhibited early task-specific rapid auditory perceptual learning of time-compressed speech within the course of the first 20 sentences. This early task-specific rapid auditory perceptual learning had unique contribution to the recognition of natural-fast speech in quiet and speech in noise, although the contribution to natural-fast speech may reflect the rapid learning that occurred in this task. When accounting for demographic and cognitive characteristics, an increase of 1 SD in the early task-specific rapid auditory perceptual learning rate was associated with ~52% increase in the odds of correctly recognizing natural-fast speech in quiet, and ~19% to 28% in the odds of correctly recognizing the different types of speech in noise. Age, vocabulary, attention, and verbal processing speed also had unique contributions to general speech recognition. However, their contribution varied between the different general speech recognition tests. Conclusions: Consistent with previous findings in other populations, in CI recipients, early task-specific rapid auditory perceptual, learning also accounts for some of the individual differences in the recognition of speech in noise and natural-fast speech in quiet. Thus, across populations, the early rapid adaptation phase of task-specific rapid auditory perceptual learning might serve as a skill that supports speech recognition in various adverse conditions. In CI users, the ability to rapidly adapt to ongoing acoustical challenges may be one of the factors associated with good CI outcomes. Overall, CI recipients with higher cognitive resources and faster rapid learning rates had better speech recognition.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3