Experienced Adult Cochlear Implant Users Show Improved Speech Recognition When Target Fitting Parameters Are Applied

Author:

de Quillettes Richard1,Kaandorp Marre1,Merkus Paul1,Kramer Sophia E.1,Smits Cas2

Affiliation:

1. Amsterdam UMC, Location Vrije Universiteit, Otolaryngology-Head and Neck Surgery, Ear and Hearing, Amsterdam Public Health research institute, Amsterdam, the Netherlands

2. Amsterdam UMC, Location University of Amsterdam, Otolaryngology-Head and Neck Surgery, Ear and Hearing, Amsterdam Public Health research institute, Amsterdam, the Netherlands.

Abstract

Objectives: The aim of the present study was to investigate whether prediction models built by de Graaff et al. (2020) can be used to improve speech recognition in experienced adult postlingual implanted Cochlear CI users. de Graaff et al. (2020) found relationships between elevated aided thresholds and a not optimal electrical dynamic range (<50 CL or >60 CL), and poorer speech recognition in quiet and in noise. The primary hypothesis of the present study was that speech recognition improves both in quiet and in noise when the sound processor is refitted to match targets derived from the prediction models from de Graaff et al. (2020). A second hypothesis was that subjectively, most of the CI users would find the new setting too loud because of an increase in C levels, and therefore, prefer the old settings. Design: A within-participant repeated measures design with 18 adult Cochlear CI users was used. T- and C-levels were changed to “optimized settings,” as predicted by the model of de Graaff et al. (2020). Aided thresholds, speech recognition in quiet, and speech recognition in noise were measured with the old settings and after a 4-week acclimatization period with the optimized settings. Subjective benefit was measured using the Device Oriented Subjective Outcome Scale questionnaire. Results: The mean electrical dynamic range changed from 41.1 (SD = 6.6) CL to 48.6 (SD = 3.0) CL. No significant change in aided thresholds was measured. Speech recognition improved for 16 out of 18 participants and remained stable for 2 participants. Average speech recognition scores in quiet significantly improved by 4.9% (SD = 3.8%). No significant change for speech recognition in noise was found. A significant improvement in subjective benefit was found for one of the Device Oriented Subjective Outcome subscales (speech cues) between the old and optimized settings. All participants chose to keep the optimized settings at the end of the study. Conclusions: We were able to improve speech recognition in quiet by optimizing the electrical dynamic range of experienced adult CI users, according to the prediction models built by de Graaff et al. (2020). There was no significant change in aided thresholds nor in speech recognition in noise. The findings of the present study suggest that improved performance for speech recognition in quiet in adult Cochlear CI users can be achieved by setting the dynamic range as close as possible to values between 50 and 60 CL when the volume level is at 10.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3