Comparison of Tonotopic and Default Frequency Fitting for Speech Understanding in Noise in New Cochlear Implantees: A Prospective, Randomized, Double-Blind, Cross-Over Study

Author:

Creff Gwenaelle12,Lambert Cassandre1,Coudert Paul1,Pean Vincent3,Laurent Stephane4,Godey Benoit124

Affiliation:

1. Department of Otolaryngology–Head and Neck Surgery (HNS), University Hospital, Rennes, France

2. MediCIS, LTSI (Image and Signal Processing Laboratory), INSERM, U1099, Rennes, France

3. Research department, MED-EL, Paris, France

4. Hearing Aid Academy, Javene, France.

Abstract

Objectives: While cochlear implants (CIs) have provided benefits for speech recognition in quiet for subjects with severe-to-profound hearing loss, speech recognition in noise remains challenging. A body of evidence suggests that reducing frequency-to-place mismatch may positively affect speech perception. Thus, a fitting method based on a tonotopic map may improve speech perception results in quiet and noise. The aim of our study was to assess the impact of a tonotopic map on speech perception in noise and quiet in new CI users. Design: A prospective, randomized, double-blind, two-period cross-over study in 26 new CI users was performed over a 6-month period. New CI users older than 18 years with bilateral severe-to-profound sensorineural hearing loss or complete hearing loss for less than 5 years were selected in the University Hospital Centre of Rennes in France. An anatomical tonotopic map was created using postoperative flat-panel computed tomography and a reconstruction software based on the Greenwood function. Each participant was randomized to receive a conventional map followed by a tonotopic map or vice versa. Each setting was maintained for 6 weeks, at the end of which participants performed speech perception tasks. The primary outcome measure was speech recognition in noise. Participants were allocated to sequences by block randomization of size two with a ratio 1:1 (CONSORT Guidelines). Participants and those assessing the outcomes were blinded to the intervention. Results: Thirteen participants were randomized to each sequence. Two of the 26 participants recruited (one in each sequence) had to be excluded due to the COVID-19 pandemic. Twenty-four participants were analyzed. Speech recognition in noise was significantly better with the tonotopic fitting at all signal-to-noise ratio (SNR) levels tested [SNR = +9 dB, p = 0.002, mean effect (ME) = 12.1%, 95% confidence interval (95% CI) = 4.9 to 19.2, standardized effect size (SES) = 0.71; SNR = +6 dB, p < 0.001, ME = 16.3%, 95% CI = 9.8 to 22.7, SES = 1.07; SNR = +3 dB, p < 0.001 ME = 13.8%, 95% CI = 6.9 to 20.6, SES = 0.84; SNR = 0 dB, p = 0.003, ME = 10.8%, 95% CI = 4.1 to 17.6, SES = 0.68]. Neither period nor interaction effects were observed for any signal level. Speech recognition in quiet (p = 0.66) and tonal audiometry (p = 0.203) did not significantly differ between the two settings. 92% of the participants kept the tonotopy-based map after the study period. No correlation was found between speech-in-noise perception and age, duration of hearing deprivation, angular insertion depth, or position or width of the frequency filters allocated to the electrodes. Conclusion: For new CI users, tonotopic fitting appears to be more efficient than the default frequency fitting because it allows for better speech recognition in noise without compromising understanding in quiet.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Speech and Hearing,Otorhinolaryngology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3