Necrostatin-1 prevents skeletal muscle ischemia reperfusion injury by regulating Bok-mediated apoptosis

Author:

Cao Yu1,Wang Hong-Bo1,Ni Chun-Jue1,Chen Shun-Li1,Wang Wan-Tie2,Wang Liang-Rong1

Affiliation:

1. Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China;

2. Institute of Ischemia-Reperfusion Injury, Wenzhou Medical University, Zhejiang, China.

Abstract

Background: Receptor interacting serine/threonine kinase 1 (RIPK1) mediates apoptosis by regulating the classic proapoptotic effectors Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak). Although Bcl-2-related ovarian killer (Bok) is structurally similar to Bak and Bax, it is unclear whether it mediates apoptosis in skeletal muscle ischemia reperfusion (IR) injury. We hypothesized that by regulating Bok-mediated apoptosis, inhibiting RIPK1 with necrostatin-1 would reduce skeletal muscle IR injury. Methods: Rats were randomized into four groups: sham (SM), IR, IR treated with necrostatin-1 (NI), or vehicle dimethyl sulfoxide (DI). For the IR group, the right femoral artery was clamped for 4 hours and then reperfused for 4 hours, and for the NI and DI groups, necrostatin-1 (1.65 mg/kg) and the equal volume of dimethyl sulfoxide were intraperitoneally administered prior to IR induction. The structural damage of muscle tissue and protein expression of Bok, Bcl-2, and cleaved caspase-3 were investigated, and apoptotic cells were identified with terminal dUTP nick-end labeling (TUNEL) staining. In vitro, human skeletal muscle cells (HSMCs) were exposed to 6 hours of oxygen-glucose deprivation followed by normoxia for 6 hours to establish an oxygen-glucose deprivation/reoxygenation (OGD/R) model. To determine the role of Bok, cell viability, lactate dehydrogenase (LDH) release, and flow cytometry were examined to demonstrate the effects of necrostatin-1 and Bok knockdown on the OGD/R insult of HSMCs. Results: Necrostatin-1 pretreatment markedly reduced IR-induced muscle damage and RIPK1, Bok, and cleaved caspase-3 expression, whereas upregualted Bcl-2 expression (p < 0.05). Furthermore, necrostatin-1 prevented mitochondrial damage and decreased TUNEL-positive muscle cells (p < 0.05). In vitro, HSMCs treated with necrostatin-1 showed reduced Bok expression, increased cell viability, and reduced LDH release in response to OGD/R (p < 0.05), and Bok knockdown significantly blunted the OGD/R insult in HSMCs. Conclusion: Necrostatin-1 prevents skeletal muscle from IR injury by regulating Bok-mediated apoptosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3