An unsupervised learning model based on CT radiomics features accurately predicts axillary lymph node metastasis in breast cancer patients: diagnostic study

Author:

Qu Limeng12,Mei Xilong3,Yi Zixi4,Zou Qiongyan12,Zhou Qin12,Zhang Danhua12,Zhou Meirong12,Pei Lei12,Long Qian12,Meng Jiahao12,Zhang Huashan5,Chen Qitong12,Yi Wenjun12

Affiliation:

1. Department of General Surgery, The Second Xiangya Hospital, Central South University

2. Clinical Research Center For Breast Disease In Hunan Province, Changsha

3. Department of Radiology, The Second Xiangya Hospital of Central South University

4. Central South University, Changsha, Hunan

5. Urinary Surgery, Changsha Central Hospital, Changsha, Hunan, China

Abstract

Background: The accuracy of traditional clinical methods for assessing the metastatic status of axillary lymph nodes (ALNs) is unsatisfactory. In this study, the authors propose the use of radiomic technology and three-dimensional (3D) visualization technology to develop an unsupervised learning model for predicting axillary lymph node metastasis in patients with breast cancer (BC), aiming to provide a new method for clinical axillary lymph node assessment in patients with this disease. Methods: In this study, we retrospectively analyzed the data of 350 patients with invasive BC who underwent lung-enhanced computed tomography (CT) and axillary lymph node dissection surgery at the Department of Breast Surgery of the Second Xiangya Hospital of Central South University. The authors used 3D visualization technology to create a 3D atlas of ALNs and identified the region of interest for the lymph nodes. Radiomic features were subsequently extracted and selected, and a prediction model for ALNs was constructed using the K-means unsupervised algorithm. To validate the model, the authors prospectively collected data from 128 BC patients who were clinically evaluated as negative at our center. Results: Using 3D visualization technology, we extracted and selected a total of 36 CT radiomics features. The unsupervised learning model categorized 1737 unlabeled lymph nodes into two groups, and the analysis of the radiomic features between these groups indicated potential differences in lymph node status. Further validation with 1397 labeled lymph nodes demonstrated that the model had good predictive ability for axillary lymph node status, with an area under the curve of 0.847 (0.825–0.869). Additionally, the model’s excellent predictive performance was confirmed in the 128 axillary clinical assessment negative cohort (cN0) and the 350 clinical assessment positive (cN+) cohort, for which the correct classification rates were 86.72 and 87.43%, respectively, which were significantly greater than those of clinical assessment methods. Conclusions: The authors created an unsupervised learning model that accurately predicts the status of ALNs. This approach offers a novel solution for the precise assessment of ALNs in patients with BC.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3