Establishment and validation of an artificial intelligence web application for predicting postoperative in-hospital mortality in patients with hip fracture: a National cohort study of 52,707 cases

Author:

Lei Mingxing1234,Feng Taojin23,Chen Min23,Shen Junmin23,Liu Jiang23,Chang Feifan23,Chen Junyu23,Sun Xinyu23,Mao Zhi5,Li Yi12,Yin Pengbin12,Tang Peifu12,Zhang Licheng12

Affiliation:

1. Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, PLA General Hospital, Beijing, China

2. Department of Orthopedics, Chinese PLA General Hospital, Beijing, China

3. Chinese PLA Medical School, Beijing, China

4. Department of Orthopedics, Hainan Hospital of Chinese PLA General Hospital, Hainan, China

5. Department of Emergency, the First Medical Center of PLA General Hospital, Beijing, China

Abstract

Background: In-hospital mortality following hip fractures is a significant concern, and accurate prediction of this outcome is crucial for appropriate clinical management. Nonetheless, there is a lack of effective prediction tools in clinical practice. By utilizing artificial intelligence and machine learning techniques, this study aims to develop a predictive model that can assist clinicians in identifying geriatric hip fracture patients at a higher risk of in-hospital mortality. Methods: A total of 52,707 geriatric hip fracture patients treated with surgery from 90 hospitals were included in this study. The primary outcome was postoperative in-hospital mortality. The patients were randomly divided into two groups, with a ratio of 7:3. The majority of patients, assigned to the training cohort, were used to develop the AI models. The remaining patients, assigned to the validation cohort, were used to validate the models. Various machine learning algorithms, including logistic regression (LR), decision tree (DT), naïve Bayesian (NB), neural network (NN), eXGBoosting machine (eXGBM), and random forest (RF), were employed for model development. A comprehensive scoring system, incorporating 10 evaluation metrics, was developed to assess the prediction performance, with higher scores indicating superior predictive capability. Based on the best machine learning-based model, an AI application was developed on the Internet. In addition, a comparative testing of prediction performance between doctors and the AI application. Findings: The eXGBM model exhibited the best prediction performance, with an AUC of 0.908 (95% CI: 0.881-0.932), as well as the highest accuracy (0.820), precision (0.817), specificity (0.814), and F1 score (0.822), and the lowest Brier score (0.120) and log loss (0.374). Additionally, the model showed favorable calibration, with a slope of 0.999 and an intercept of 0.028. According to the scoring system incorporating 10 evaluation metrics, the eXGBM model achieved the highest score (56), followed by the RF model (48) and NN model (41). The LR, DT, and NB models had total scores of 27, 30, and 13, respectively. The AI application has been deployed online at https://in-hospitaldeathinhipfracture-l9vhqo3l55fy8dkdvuskvu.streamlit.app/, based on the eXGBM model. The comparative testing revealed that the AI application’s predictive capabilities significantly outperformed those of the doctors in terms of AUC values (0.908 vs. 0.682, P<0.001). Conclusions: The eXGBM model demonstrates promising predictive performance in assessing the risk of postoperative in-hospital mortality among geriatric hip fracture patients. The developed AI model serves as a valuable tool to enhance clinical decision-making.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3