Multilevel effective surgical workflow recognition in robotic left lateral sectionectomy with deep learning: experimental research

Author:

Liu Yanzhe1ORCID,Zhao Shang2,Zhang Gong1,Zhang Xiuping1,Hu Minggen1,Zhang Xuan1,Li Chenggang1,Zhou S. Kevin2,Liu Rong1

Affiliation:

1. Medical School of Chinese People’s Liberation Army (PLA); Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing

2. School of Biomedical Engineering & Suzhou Institute for Advanced Research, Center for Medical Imaging, Robotics, Analytic Computing & Learning (MIRACLE), University of Science and Technology of China, Suzhou, China

Abstract

Background: Automated surgical workflow recognition is the foundation for computational models of medical knowledge to interpret surgical procedures. The fine-grained segmentation of the surgical process and the improvement of the accuracy of surgical workflow recognition facilitate the realization of autonomous robotic surgery. This study aimed to construct a multigranularity temporal annotation dataset of the standardized robotic left lateral sectionectomy (RLLS) and develop a deep learning-based automated model for multilevel overall and effective surgical workflow recognition. Methods: From December 2016 to May 2019, 45 cases of RLLS videos were enrolled in our dataset. All frames of RLLS videos in this study are labeled with temporal annotations. The authors defined those activities that truly contribute to the surgery as effective frames, while other activities are labeled as under-effective frames. Effective frames of all RLLS videos are annotated with three hierarchical levels of 4 steps, 12 tasks, and 26 activities. A hybrid deep learning model were used for surgical workflow recognition of steps, tasks, activities, and under-effective frames. Moreover, the authors also carried out multilevel effective surgical workflow recognition after removing under-effective frames. Results: The dataset comprises 4 383 516 annotated RLLS video frames with multilevel annotation, of which 2 418 468 frames are effective. The overall accuracies of automated recognition for Steps, Tasks, Activities, and under-effective frames are 0.82, 0.80, 0.79, and 0.85, respectively, with corresponding precision values of 0.81, 0.76, 0.60, and 0.85. In multilevel effective surgical workflow recognition, the overall accuracies were increased to 0.96, 0.88, and 0.82 for Steps, Tasks, and Activities, respectively, while the precision values were increased to 0.95, 0.80, and 0.68. Conclusion: In this study, the authors created a dataset of 45 RLLS cases with multilevel annotations and developed a hybrid deep learning model for surgical workflow recognition. The authors demonstrated a fairly higher accuracy in multilevel effective surgical workflow recognition when under-effective frames were removed. Our research could be helpful in the development of autonomous robotic surgery.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3