Machine learning prediction model of major adverse outcomes after pediatric congenital heart surgery: a retrospective cohort study

Author:

Tong Chaoyang1,Du Xinwei2,Chen Yancheng3,Zhang Kan1,Shan Mengqin1,Shen Ziyun4,Zhang Haibo2,Zheng Jijian1

Affiliation:

1. Department of Anesthesiology

2. Pediatric Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine and National Children’s Medical Center, Shanghai Jiao Tong University

3. Alibaba Group

4. Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, People’s Republic of China

Abstract

Background: Major adverse postoperative outcomes (APOs) can greatly affect mortality, hospital stay, care management and planning, and quality of life. This study aimed to evaluate the performance of five machine learning (ML) algorithms for predicting four major APOs after pediatric congenital heart surgery and their clinically meaningful model interpretations. Methods: Between August 2014 and December 2021, 23 000 consecutive pediatric patients receiving congenital heart surgery were enrolled. Based on the split date of 1 January 2019, the authors selected 13 927 participants for the training cohort, and 9073 participants for the testing cohort. Four predefined major APOs including low cardiac output syndrome (LCOS), pneumonia, renal failure, and deep venous thrombosis (DVT) were investigated. Thirty-nine clinical and laboratory features were inputted in five ML models: light gradient boosting machine (LightGBM), logistic regression (LR), support vector machine, random forest, and CatBoost. The performance and interpretations of ML models were evaluated using the area under the receiver operating characteristic curve (AUC) and Shapley Additive Explanations (SHAP). Results: In the training cohort, CatBoost algorithms outperformed others with the mean AUCs of 0.908 for LCOS and 0.957 for renal failure, while LightGBM and LR achieved the best mean AUCs of 0.886 for pneumonia and 0.942 for DVT, respectively. In the testing cohort, the best-performing ML model for each major APOs with the following mean AUCs: LCOS (LightGBM), 0.893 (95% CI: 0.884–0.895); pneumonia (LR), 0.929 (95% CI: 0.926–0.931); renal failure (LightGBM), 0.963 (95% CI: 0.947–0.979), and DVT (LightGBM), 0.970 (95% CI: 0.953–0.982). The performance of ML models using only clinical variables was slightly lower than those using combined data, with the mean AUCs of 0.873 for LCOS, 0.894 for pneumonia, 0.953 for renal failure, and 0.933 for DVT. The SHAP showed that mechanical ventilation time was the most important contributor of four major APOs. Conclusions: In pediatric congenital heart surgery, the established ML model can accurately predict the risk of four major APOs, providing reliable interpretations for high-risk contributor identification and informed clinical decisions-making.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3