Finite Element Tissue Strains Computation to Evaluate the Mechanical Protection Provided by a New Bilayer Dressing for Heel Pressure Injuries

Author:

Fougeron Nolwenn,Chagnon Gregory,Connesson Nathanael,Alonso Thierry,Pasquinet Laurent,Auguste Stephane,Perrier Antoine,Payan Yohan

Abstract

ABSTRACT OBJECTIVE Pressure injuries (PIs) result in an extended duration of care and increased risks of complications for patients. When treating a PI, the aim is to hinder further PI development and speed up the healing time. Urgo RID recently developed a new bilayer dressing to improve the healing of stages 2 and 3 heel PIs. This study aims to numerically investigate the efficiency of this new bilayer dressing to reduce strains around the PI site. METHODS The researchers designed three finite element models based on the same heel data set to compare the Green-Lagrange compressive and maximal shear strains in models without a PI, with a stage 2 PI, and with a stage 3 PI. Simulations with and without the dressing were computed. Analysis of the results was performed in terms of strain clusters, defined as volumes of tissues with high shear and compressive strains. RESULTS Decreases in the peak and mean values of strains were low in all three models, between 0% and 20%. However, reduction of the strain cluster volumes was high and ranged from 55% to 68%. CONCLUSIONS The cluster analysis enables the robust quantitative comparison of finite element analysis. Results suggest that use of the new bilayer dressing may reduce strain around the PI site and that this dressing could also be used in a prophylactic manner. Results should be extended to a larger cohort of participants.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Dermatology

Reference38 articles.

1. Risk factors for newly acquired pressure ulcer and the impact of nurse staffing on pressure ulcer incidence;J Nurs Manag,2022

2. A review of the surgical management of heel pressure injuries in the 21st century;Int Wound J,2016

3. What is the healing time of stage II pressure injuries? Findings from a secondary analysis;Adv Skin Wound Care,2015

4. Our contemporary understanding of the aetiology of pressure injuries/pressure injuries;Int Wound J,2022

5. Heel pressure injuries;Adv Skin Wound Care,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3