Histamine and its H1 receptors in the ventral pallidum mediate formalin-induced pain-related behaviors through this region and spinal cord opioid receptors

Author:

Asgharieh-Ahari Morteza1,Tamaddonfard Esmaeal1,Erfanparast Amir1,Soltanalinejad-Taghiabad Farhad2

Affiliation:

1. Division of Physiology, Department of Basic Sciences

2. Division of Anatomy, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

Abstract

Many structures of the central nervous system recruit different neurotransmitters in pain processing. This study focused on the contribution of histamine and its H1 receptors in the ventral pallidum (VP) in mediating pain-triggered behaviors. Intra-VP microinjection of histamine and 2-pyridylethylamine (2-PEA, a histamine H1 receptor agonist) at the same doses of 0.5 and 1 µg/200 nl reduced both the first and second phases of licking/biting duration as well as flinching number induced by intra-plantar (ipl) injection of formalin (2.5%, 50 µl). Premicroinjection of mepyramine (a histamine H1 antagonist, 2 µg/200 nl) into the VP antagonized the suppressive effects of 1 µg/200 nl histamine and 2-PEA on licking/biting and flinching behaviors. The possible mechanisms of the above-mentioned pain-reducing effects were followed by intra-VP and intrathecal administration of naloxone (an opioid receptor antagonist). Naloxone (2 µg/200 nl) preadministration into the VP inhibited attenuating effects of histamine and 2-PEA on both the licking/biting and flinching behaviors, whereas intrathecal injection of naloxone only inhibited their suppressing effects on flinching behavior. None of the treatments used in this study altered the animal’s motor activity. The obtained results may reveal the role of histamine and its activated H1 receptor in the VP in suppressing the pain behaviors caused by formalin. Opioid receptors in the VP and spinal cord may contribute to these functions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Psychiatry and Mental health,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3