Quantitative Description of Mitral Valve Geometry Using Real-Time Three-Dimensional Echocardiography

Author:

Ryan Liam P.1,Jackson Benjamin M.1,Eperjesi Thomas J.1,Plappert Theodore J.1,John-Sutton Martin St.2,Gorman Robert C.1,Gorman Joseph H.1

Affiliation:

1. Harrison Department of Surgical Research, and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania.

2. Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania.

Abstract

Objectives Leaflet and annular geometry are important determinants of mitral valve (MV) stress. Repair techniques which optimize valvular geometry will reduce stress and potentially increase repair durability. The development of such procedures will require image processing methodologies that provide a quantitative description of three-dimensional valvular geometry. Using three-dimensional echocardiography in conjunction with novel geometric modeling and rendering techniques, we have developed a high-resolution, quantitative, three-dimensional methodology for imaging the human MV. Methods Five normal adults underwent MV imaging using real-time three-dimensional echocardiography. Using specially designed image analysis software, multiple valvular geometric parameters, including the magnitude and orientation of leaflet curvature, leaflet surface area, annular height, intercommissural width, septolateral annular diameter, and annular area were determined for each subject. Image rendering techniques that allow for the clear and concise presentation of this detailed information are also presented. Results Although three-dimensional annular and leaflet geometry were found to be highly conserved among normal human subjects, substantial regional variation in leaflet geometry was observed. Interestingly, leaflet geometric heterogeneity was most pronounced in the midposterior leaflet, the region most commonly involved in leaflet flail in subjects with myxomatous disease. Conclusions The image processing and graphical rendering techniques that we have developed can be used to provide a complete description of three-dimensional MV geometry in human subjects. Widespread application of these techniques to normal subjects and patients with MV disease will provide insight into the geometric basis of both valvular pathology and repair durability.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,General Medicine,Surgery,Pulmonary and Respiratory Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3