Abstract
Background
The authors' purpose of this study was to elucidate the mechanisms of direct effects of halothane on the contractile proteins and Ca2+ release from the sarcoplasmic reticulum Ca2+ stores using isolated skinned strips (sarcolemma permealized with saponin) from rabbit pulmonary arteries.
Methods
The sarcoplasmic reticular Ca2+ stores were examined by immersing the skinned strips sequentially in solutions to load Ca2+ into and release Ca2+ from the sarcoplasmic reticulum using caffeine, inositol 1,4,5-trisphosphate, or halothane. The contractile proteins were assessed by activating the strips with Ca2+ followed by administration of halothane (with or without protein kinase C inhibitors). Tension, fura-2 fluorescence activated by Ca2+ release, and phosphorylation of myosin light chains were measured.
Results
Halothane (0.07-3.00%) increased Ca2+, tension, and phosphorylation of myosin light chains in a dose-dependent manner. Halothane decreased accumulation of Ca2+ in the sarcoplasmic reticulum and enhanced the caffeine-induced tension transients. In strips pretreated with caffeine or inositol 1,4,5-trisphosphate, halothane-induced tension transients were reduced but Ca2+ was not. In strips activated by 1 microM Ca2+, halothane (0.5-3.0%) decreased 20-45% of the activated force at 15 min. Halothane (3%) transiently increased the force (20%) associated with increases in Ca2+ and phosphorylation of myosin light chains. The increased force was abolished and the subsequent relaxation was enhanced by the protein kinase C inhibitor bisindolylmaleimide but not by indolocarbazole Gö-6976.
Conclusions
In skinned pulmonary arterial strips, halothane, at clinical concentrations, inhibits uptake of Ca2+ by and induces release of Ca2+ from intracellular stores possibly shared by caffeine and inositol 1,4,5-trisphosphate, which are regulated by phosphorylation of myosin light chains. The time-dependent inhibition of the contractile proteins by halothane may be mediated by Ca2+-independent protein kinase C.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献